Spaces:
Runtime error
Runtime error
# Run with: streamlit run visualization.py | |
import streamlit as st | |
import os | |
import base64 | |
import json | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
class Visualization: | |
def __init__( | |
self, | |
path_instructions, | |
path_data, | |
lang, | |
num_docs, | |
num_docs_for_words, | |
max_len_text_display, | |
): | |
self.path_instructions = path_instructions | |
self.path_data = path_data | |
self.lang = lang | |
self.num_docs = num_docs | |
self.num_docs_for_words = num_docs_for_words | |
self.max_len_text_display = max_len_text_display | |
def preamble(self): | |
st.markdown( | |
"Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail." | |
) | |
def get_binary_file_downloader_html(bin_file, file_label="File"): | |
with open(bin_file, "rb") as f: | |
data = f.read() | |
bin_str = base64.b64encode(data).decode() | |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>' | |
return href | |
st.markdown( | |
get_binary_file_downloader_html( | |
self.path_instructions, | |
"Download the filtering pipeline of OSCAR as pdf", | |
), | |
unsafe_allow_html=True, | |
) | |
def open_data(self): | |
with open(self.path_data) as json_file: | |
data = json.load(json_file) | |
self.num_docs = min(self.num_docs, len(data)) | |
self.num_docs_for_words = min(self.num_docs_for_words, len(data)) | |
if "words" in data[0]: | |
words = [doc["words"] for doc in data[: self.num_docs_for_words]] | |
words = [word for doc in words for word in doc] | |
self.words = pd.DataFrame(words) | |
else: | |
self.words = None | |
docs = data[: self.num_docs] | |
for doc in docs: | |
if not (self.words is None): | |
del doc["words"] | |
if len(doc["text"]) > self.max_len_text_display: | |
doc["text"] = ( | |
doc["text"][: self.max_len_text_display] | |
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" | |
) | |
self.docs = pd.DataFrame(docs) | |
def set_title(self): | |
st.title(f"{self.num_docs} {self.lang} documents from OSCAR with their stats.") | |
def filtering_of_docs(self): | |
st.sidebar.subheader("Parameters of the filtering on documents") | |
def set_sliders(docs): | |
columns = list(docs) | |
keys = [] | |
conds = {} | |
def get_cond(key, cutoff, max_cutoff): | |
if max_cutoff: | |
return self.docs[key] <= cutoff | |
return self.docs[key] >= cutoff | |
def print_discared_by_cond(cond): | |
st.sidebar.caption( | |
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter." | |
) | |
st.sidebar.caption("---------") | |
if "number_words" in columns: | |
cutoff_def = "If the number of words of a document is lower than this number, the document is removed." | |
max_nb_words = int(np.max(docs["number_words"])) + 1 | |
cutoff_min_number_words = st.sidebar.slider( | |
cutoff_def, 0, min(max_nb_words, 500), 0 | |
) | |
new_key = ("number_words", cutoff_min_number_words, False) | |
keys.append(new_key) | |
cond_1 = get_cond(new_key[0], new_key[1], new_key[2]) | |
print_discared_by_cond(cond_1) | |
cutoff_def = "If the number of words of a document is higher than this number, the document is removed." | |
cutoff_max_number_words = st.sidebar.slider( | |
cutoff_def, 0, max_nb_words, max_nb_words | |
) | |
new_key = ("number_words", cutoff_max_number_words, True) | |
keys.append(new_key) | |
cond_2 = get_cond(new_key[0], new_key[1], new_key[2]) | |
print_discared_by_cond(cond_2) | |
conds["number_words"] = [cond_1, cond_2] | |
if "special_characters_ratio" in columns: | |
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed." | |
cutoff_special_characters_ratio = st.sidebar.slider( | |
cutoff_def, 0.0, 1.0, 1.0, step=0.01 | |
) | |
new_key = ( | |
"special_characters_ratio", | |
cutoff_special_characters_ratio, | |
True, | |
) | |
keys.append(new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
print_discared_by_cond(cond) | |
conds["special_characters_ratio"] = [cond] | |
if "stopwords_ratio" in columns: | |
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed." | |
cutoff_stopwords_ratio = st.sidebar.slider( | |
cutoff_def, 0.0, 1.0, 0.0, step=0.01 | |
) | |
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) | |
keys.append(new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
print_discared_by_cond(cond) | |
conds["stopwords_ratio"] = [cond] | |
if "badwords_ratio" in columns: | |
cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed." | |
cutoff_badwords_ratio = st.sidebar.slider( | |
cutoff_def, 0.0, 1.0, 1.0, step=0.01 | |
) | |
new_key = ("badwords_ratio", cutoff_badwords_ratio, True) | |
keys.append(new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
print_discared_by_cond(cond) | |
conds["badwords_ratio"] = [cond] | |
if "lang_id_score" in columns: | |
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed." | |
cutoff_lang_id_score = st.sidebar.slider( | |
cutoff_def, 0.0, 1.0, 0.0, step=0.01 | |
) | |
new_key = ("lang_id_score", cutoff_lang_id_score, False) | |
keys.append(new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
print_discared_by_cond(cond) | |
conds["lang_id_score"] = [cond] | |
if "perplexity_score" in columns: | |
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed." | |
max_pp = int(np.max(docs["perplexity_score"])) + 1 | |
cutoff_perplexity_score = st.sidebar.slider( | |
cutoff_def, 0, max_pp, max_pp | |
) | |
new_key = ("perplexity_score", cutoff_perplexity_score, True) | |
keys.append(new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
print_discared_by_cond(cond) | |
conds["perplexity_score"] = [cond] | |
return keys, conds | |
self.keys, conds = set_sliders(self.docs) | |
all_conds = [subcond for cond in list(conds.values()) for subcond in cond] | |
all_conds = np.all(all_conds, axis=0) | |
st.header("Filtering on documents") | |
def display_dataset(cond, description): | |
displayed_docs = self.docs.loc[cond] | |
st.subheader( | |
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)" | |
) | |
st.markdown( | |
"Click on a column to sort by it, place the cursor on the text to display it." | |
) | |
st.dataframe(displayed_docs) | |
display_dataset(np.invert(all_conds), "Discarded documents") | |
# st.subheader("Display discarded documents by filter") | |
display_discarded_documents_by_filter = st.checkbox( | |
"Display discarded documents by filter" | |
) | |
if display_discarded_documents_by_filter: | |
columns = list(self.docs) | |
if "number_words" in columns: | |
cond_filter = np.invert(np.all(conds["number_words"], axis=0)) | |
display_dataset( | |
cond_filter, | |
"Discarded documents for the filter on the number of words", | |
) | |
if "special_characters_ratio" in columns: | |
cond_filter = np.invert( | |
np.all(conds["special_characters_ratio"], axis=0) | |
) | |
display_dataset( | |
cond_filter, | |
"Discarded documents for the filter on the special characters ratio", | |
) | |
if "stopwords_ratio" in columns: | |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0)) | |
display_dataset( | |
cond_filter, | |
"Discarded documents for the filter on the stop words ratio", | |
) | |
if "badwords_ratio" in columns: | |
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0)) | |
display_dataset( | |
cond_filter, | |
"Discarded documents for the filter on the bad words ratio", | |
) | |
if "lang_id_score" in columns: | |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0)) | |
display_dataset( | |
cond_filter, | |
"Discarded documents for the filter on the language identification confidence score", | |
) | |
if "perplexity_score" in columns: | |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0)) | |
display_dataset( | |
cond_filter, | |
"Discarded documents for the filter on the perplexity score", | |
) | |
display_dataset(all_conds, "Retained documents") | |
def filtering_of_words(self): | |
if not (self.words is None): | |
st.sidebar.subheader("Parameter of the filtering on words") | |
cutoff_def = "If the length of a word is higher than this number, the word is removed." | |
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200) | |
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word) | |
incorrect_substrings = st.sidebar.checkbox( | |
"Remove words with incorrect substrings." | |
) | |
cond_words = self.words["len_word"] <= cutoff_word | |
if incorrect_substrings: | |
cond_words = cond_words & np.invert(self.words["incorrect_substring"]) | |
st.header("Filtering on words") | |
st.markdown( | |
f"Since the number of words is way larger than the number of documents, " | |
f"we consider in this section words for the first {self.num_docs_for_words} documents only." | |
) | |
discarded_words = self.words.loc[np.invert(cond_words)] | |
st.subheader( | |
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)" | |
) | |
st.markdown( | |
"Click on a column to sort by it, place the cursor on the text to display it." | |
) | |
st.dataframe(discarded_words) | |
retained_words = self.words.loc[cond_words] | |
st.subheader( | |
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)" | |
) | |
st.markdown( | |
"Click on a column to sort by it, place the cursor on the text to display it." | |
) | |
st.dataframe(retained_words) | |
def plot_distributions_filtering_parameters(self): | |
st.header("Distributions of the filtering parameters") | |
display_distributions = st.checkbox("Display distributions") | |
if display_distributions: | |
def plot_hist(dataframe, key, num_bins=50): | |
st.subheader(" ".join(key.split("_"))) | |
hist_values = dataframe[key].values | |
max_range = np.max(hist_values) | |
hist_values = np.histogram( | |
hist_values, bins=num_bins, range=(0, max_range) | |
)[0] | |
st.bar_chart(hist_values) | |
st.markdown(f"Each bin is of size: {max_range/num_bins}.") | |
for key in list({el[0]: None for el in self.keys}): | |
plot_hist(self.docs, key) | |
if not (self.words is None): | |
plot_hist(self.words, "len_word") | |
def plot_zipf_law(self): | |
if not (self.words is None): | |
st.header("Zipf's Law") | |
display_zipf_law = st.checkbox("Display Zipf's Law") | |
if display_zipf_law: | |
freq_words = {} | |
for _, row in self.words.iterrows(): | |
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 | |
freq_words = np.array(list(freq_words.values())) | |
freq_words = -np.sort(-freq_words) | |
fig, ax = plt.subplots() | |
ax.loglog(freq_words) | |
ax.set_title("Zipf's Law") | |
ax.set_xlabel("$i$-th most frequent word") | |
ax.set_ylabel("frequency in the documents") | |
st.pyplot(fig) | |
def download_data(self): | |
st.header("Download data") | |
with open(self.path_data) as json_file: | |
btn = st.download_button( | |
label="Download data as json", | |
data=json_file, | |
file_name="data.json", | |
) | |
def visualization(self): | |
self.preamble() | |
self.open_data() | |
self.set_title() | |
self.filtering_of_docs() | |
self.filtering_of_words() | |
self.plot_distributions_filtering_parameters() | |
#self.plot_zipf_law() | |
self.download_data() | |
path_instructions = "./filtering_pipeline_oscar.pdf" | |
path_data = "./en_examples_with_stats.json" | |
lang = "English" | |
num_docs = 5000 | |
num_docs_for_words = 500 | |
max_len_text_display = 10000 | |
visualization = Visualization( | |
path_instructions, | |
path_data, | |
lang, | |
num_docs, | |
num_docs_for_words, | |
max_len_text_display, | |
) | |
visualization.visualization() | |