HugoLaurencon's picture
distributions for the filters on words and discarded words by filter
da13b29
raw
history blame
33.2 kB
# Run with: streamlit run visualization.py
import streamlit as st
import os
from io import StringIO
import base64
import json
import pandas as pd
pd.options.mode.chained_assignment = None
import numpy as np
import matplotlib.pyplot as plt
from filtering import LoadParameters, ModifyingDocuments, Filtering
class Visualization:
def __init__(
self,
path_instructions,
path_data,
lang,
num_docs,
num_docs_for_words,
max_len_text_display,
lang_dataset_id,
path_fasttext_model,
path_sentencepiece_model,
path_kenlm_model,
):
self.path_instructions = path_instructions
self.path_data = path_data
self.lang = lang
self.num_docs = num_docs
self.num_docs_for_words = num_docs_for_words
self.max_len_text_display = max_len_text_display
self.lang_dataset_id = lang_dataset_id
self.param = LoadParameters.load_parameters(lang_dataset_id)
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
self.model_lang_id = LoadParameters.load_model_lang_id(
lang_dataset_id, path_fasttext_model
)
self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
lang_dataset_id, path_sentencepiece_model
)
self.sentencepiece_model_tok = (
self.sentencepiece_model if self.param["tokenization"] else None
)
self.kenlm_model = LoadParameters.load_kenlm_model(
lang_dataset_id, path_kenlm_model
)
def warning_preamble(self):
st.markdown(
"This demo can be a little slow, and only allows you to process up to 5000 documents "
"for a decent speed. If you want to display up to three times more documents and have "
"a faster visualization, we invite you to run this "
"[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) "
"on your computer."
)
def preamble(self):
def get_binary_file_downloader_html(bin_file, file_label="File"):
with open(bin_file, "rb") as f:
data = f.read()
bin_str = base64.b64encode(data).decode()
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
return href
st.markdown(
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this "
+ get_binary_file_downloader_html(
self.path_instructions,
"pdf",
)
+ ".",
unsafe_allow_html=True,
)
def open_data(self):
with open(self.path_data) as json_file:
data = json.load(json_file)
self.num_docs = min(self.num_docs, len(data))
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
if "words" in data[0]:
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
words = [word for doc in words for word in doc]
self.words = pd.DataFrame(words)
else:
self.words = None
docs = data[: self.num_docs]
for doc in docs:
if not (self.words is None):
del doc["words"]
if len(doc["text"]) > self.max_len_text_display:
doc["text"] = (
doc["text"][: self.max_len_text_display]
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
)
self.docs_checkpoint = pd.DataFrame(docs)
self.docs = self.docs_checkpoint
def set_title(self):
st.title(f"Filtering visualization")
@staticmethod
def print_discarded_by_cond(cond):
st.caption(
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
)
@staticmethod
def plot_hist(dataframe, key, num_bins=50):
checkbox = st.checkbox(
"Diplay distribution", value=True, key=f"display_distribution_{key[0]}"
)
if checkbox:
fig, ax = plt.subplots()
val = dataframe[key[0]].values
if np.median(val) != 0:
val = val[
abs(val - np.median(val))
< 9 * np.median(np.absolute(val - np.median(val)))
]
ax.hist(val, bins=num_bins, density=True)
ax.set_title(" ".join(key[0].split("_")))
ax.axvline(x=key[1], color="r", linestyle="dashed")
st.pyplot(fig)
@staticmethod
def display_dataset(dataframe, cond, description, type_of_examples):
displayed_examples = dataframe.loc[cond]
st.subheader(
f"{description}: {len(displayed_examples)} {type_of_examples} ({len(displayed_examples) / len(dataframe.index) * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(displayed_examples)
def filtering_of_docs(self):
st.sidebar.subheader("Parameters of the filtering on documents")
def set_sliders():
columns = list(self.docs)
keys = []
conds = {}
def get_cond(key, cutoff, max_cutoff):
if max_cutoff:
return self.docs[key] <= cutoff
return self.docs[key] >= cutoff
if "number_words" in columns:
with st.sidebar.expander("Number of words"):
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
max_nb_words = int(np.max(self.docs["number_words"])) + 1
cutoff_min_number_words = st.slider(
cutoff_def, 0, min(max_nb_words, 500), 0
)
new_key = ("number_words", cutoff_min_number_words, False)
keys.append(new_key)
Visualization.plot_hist(self.docs, new_key)
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond_1)
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
cutoff_max_number_words = st.slider(
cutoff_def, 0, max_nb_words, max_nb_words
)
new_key = ("number_words", cutoff_max_number_words, True)
keys.append(new_key)
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond_2)
conds["number_words"] = [cond_1, cond_2]
if "repetitions_ratio" in columns:
with st.sidebar.expander("Repetitions ratio"):
val_repetitions_lengths = list(
self.docs["repetitions_ratio"].iloc[0].keys()
)
default_index = (
val_repetitions_lengths.index("10")
if "10" in val_repetitions_lengths
else 0
)
label_selectbox = "Length of the repetitions (that will determine the repetitions ratio)."
repetitions_length = st.selectbox(
label=label_selectbox,
options=val_repetitions_lengths,
index=default_index,
)
st.caption(
"Choosing a higher or lower number does not mean that the filtering "
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
"tends to associate a high repetitions ratio to very long documents (like book chapters), but with "
"few or no repetitions, simply because their length gives them more diversity, and we do "
"not want to discard such documents."
)
self.docs["repetitions_ratio"] = self.docs_checkpoint[
"repetitions_ratio"
]
for i in range(len(self.docs["repetitions_ratio"])):
self.docs["repetitions_ratio"].iloc[i] = self.docs[
"repetitions_ratio"
].iloc[i][repetitions_length]
cutoff_def = "If the repetitions ratio of a document is higher than this number, the document is removed."
cutoff_repetitions_ratio = st.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"repetitions_ratio",
cutoff_repetitions_ratio,
True,
repetitions_length,
)
keys.append(new_key)
Visualization.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond)
conds["repetitions_ratio"] = [cond]
if "special_characters_ratio" in columns:
with st.sidebar.expander("Special characters ratio"):
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
cutoff_special_characters_ratio = st.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"special_characters_ratio",
cutoff_special_characters_ratio,
True,
)
keys.append(new_key)
Visualization.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond)
conds["special_characters_ratio"] = [cond]
if "stopwords_ratio" in columns:
with st.sidebar.expander("Stop words ratio"):
stopwords_file = st.file_uploader(
"Upload your own list of stop words (one per line). If there is none, the default one is used."
)
if stopwords_file:
new_stopwords = StringIO(
stopwords_file.getvalue().decode("utf-8")
).read()
new_stopwords = set(new_stopwords.split("\n"))
self.docs["stopwords_ratio"] = self.docs_checkpoint[
"stopwords_ratio"
]
for i in range(len(self.docs["stopwords_ratio"])):
self.docs["stopwords_ratio"].iloc[
i
] = Filtering.compute_stopwords_ratio(
self.docs["text"].iloc[i],
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
new_stopwords,
)
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
cutoff_stopwords_ratio = st.slider(
cutoff_def, 0.0, 1.0, 0.0, step=0.01
)
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
keys.append(new_key)
Visualization.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond)
conds["stopwords_ratio"] = [cond]
if "flagged_words_ratio" in columns:
with st.sidebar.expander("Flagged words ratio"):
flagged_words_file = st.file_uploader(
"Upload your own list of flagged words (one per line). If there is none, the default one is used."
)
if flagged_words_file:
new_flagged_words = StringIO(
flagged_words_file.getvalue().decode("utf-8")
).read()
new_flagged_words = set(new_flagged_words.split("\n"))
self.docs["flagged_words_ratio"] = self.docs_checkpoint[
"flagged_words_ratio"
]
for i in range(len(self.docs["flagged_words_ratio"])):
self.docs["flagged_words_ratio"].iloc[
i
] = Filtering.compute_flagged_words_ratio(
self.docs["text"].iloc[i],
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
new_flagged_words,
)
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
max_fwr = np.max(self.docs["flagged_words_ratio"])
cutoff_flagged_words_ratio = st.slider(
cutoff_def, 0.0, max_fwr, max_fwr, step=0.001
)
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
keys.append(new_key)
Visualization.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond)
conds["flagged_words_ratio"] = [cond]
if "lang_id_score" in columns:
with st.sidebar.expander("Language ID confidence score"):
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
cutoff_lang_id_score = st.slider(
cutoff_def, 0.0, 1.0, 0.0, step=0.01
)
new_key = ("lang_id_score", cutoff_lang_id_score, False)
keys.append(new_key)
Visualization.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond)
conds["lang_id_score"] = [cond]
if "perplexity_score" in columns:
with st.sidebar.expander("Perplexity score"):
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
max_pp = int(np.max(self.docs["perplexity_score"])) + 1
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp)
new_key = ("perplexity_score", cutoff_perplexity_score, True)
keys.append(new_key)
Visualization.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization.print_discarded_by_cond(cond)
conds["perplexity_score"] = [cond]
return keys, conds
self.keys, conds = set_sliders()
self.parameters = self.keys * 1
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
all_conds = np.all(all_conds, axis=0)
with st.expander(
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
):
st.header(
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
)
Visualization.display_dataset(
self.docs, np.invert(all_conds), "Discarded documents", "docs"
)
# st.subheader("Display discarded documents by filter")
display_discarded_documents_by_filter = st.checkbox(
"Display discarded documents by filter"
)
if display_discarded_documents_by_filter:
columns = list(self.docs)
if "number_words" in columns:
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
Visualization.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the number of words",
"docs",
)
if "repetitions_ratio" in columns:
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
Visualization.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the repetitions ratio",
"docs",
)
if "special_characters_ratio" in columns:
cond_filter = np.invert(
np.all(conds["special_characters_ratio"], axis=0)
)
Visualization.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the special characters ratio",
"docs",
)
if "stopwords_ratio" in columns:
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
Visualization.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the stop words ratio",
"docs",
)
if "flagged_words_ratio" in columns:
cond_filter = np.invert(
np.all(conds["flagged_words_ratio"], axis=0)
)
Visualization.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the flagged words ratio",
"docs",
)
if "lang_id_score" in columns:
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
Visualization.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the language identification confidence score",
"docs",
)
if "perplexity_score" in columns:
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
Visualization.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the perplexity score",
"docs",
)
Visualization.display_dataset(
self.docs, all_conds, "Retained documents", "docs"
)
st.header("Download data")
with open(self.path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
def filtering_of_words(self):
if not (self.words is None):
columns = list(self.words)
st.sidebar.subheader("Parameter of the filtering on words")
conds_words = {}
if "len_word" in columns:
with st.sidebar.expander("Length of words"):
cutoff_def = "If the length of a word is higher than this number, the word is removed."
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
new_key = ("len_word", cutoff_word, True)
self.parameters.append(new_key)
Visualization.plot_hist(self.words, new_key)
cond_len_words = self.words["len_word"] <= cutoff_word
Visualization.print_discarded_by_cond(cond_len_words)
conds_words["len_word"] = cond_len_words
if "incorrect_substrings" in columns:
with st.sidebar.expander("Words with incorrect substrings"):
incorrect_substrings = st.checkbox(
"Remove words with incorrect substrings."
)
self.parameters.append(
("incorrect_substrings", incorrect_substrings)
)
checkbox = st.checkbox(
"Diplay distribution",
value=True,
key="display_distribution_incorrect_substrings",
)
if checkbox:
incor_sub = np.array(self.words["incorrect_substrings"]) * 1
with_incor_sub = np.sum(incor_sub)
without_incor_sub = len(incor_sub) - with_incor_sub
st.markdown(
f"Number of words with incorrect substrings: {with_incor_sub}"
)
st.markdown(
f"Number of words without incorrect substrings: {without_incor_sub}"
)
if incorrect_substrings:
cond_incorrect_substrings = np.invert(
self.words["incorrect_substrings"]
)
else:
cond_incorrect_substrings = np.array(
[
True
for i in range(len(self.words["incorrect_substrings"]))
]
)
Visualization.print_discarded_by_cond(cond_incorrect_substrings)
conds_words["incorrect_substrings"] = cond_incorrect_substrings
all_conds_words = np.all(list(conds_words.values()), axis=0)
with st.expander(
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
):
st.header(
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
)
st.markdown(
f"Since the number of words is way larger than the number of documents, "
f"we consider in this section words for only {self.num_docs_for_words} documents."
)
Visualization.display_dataset(
self.words, np.invert(all_conds_words), "Discarded words", "words"
)
# st.subheader("Display discarded words by filter")
display_discarded_words_by_filter = st.checkbox(
"Display discarded words by filter"
)
if display_discarded_words_by_filter:
if "len_word" in columns:
cond_filter = np.invert(conds_words["len_word"])
Visualization.display_dataset(
self.words,
cond_filter,
"Discarded words for the filter on length",
"words",
)
if "incorrect_substrings" in columns:
cond_filter = np.invert(conds_words["incorrect_substrings"])
Visualization.display_dataset(
self.words,
cond_filter,
"Discarded words for the filter on incorrect substrings",
"words",
)
Visualization.display_dataset(
self.words, all_conds_words, "Retained words", "words"
)
def download_parameters(self):
st.sidebar.subheader("Download parameters")
btn = st.sidebar.download_button(
label="Download current parameters as json",
data=json.dumps(self.parameters),
file_name=f"parameters_{self.lang_dataset_id}.json",
)
"""
def plot_zipf_law(self):
if not (self.words is None):
st.header("Zipf's Law")
display_zipf_law = st.checkbox("Display Zipf's Law")
if display_zipf_law:
freq_words = {}
for _, row in self.words.iterrows():
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
freq_words = np.array(list(freq_words.values()))
freq_words = -np.sort(-freq_words)
fig, ax = plt.subplots()
ax.loglog(freq_words)
ax.set_title("Zipf's Law")
ax.set_xlabel("$i$-th most frequent word")
ax.set_ylabel("frequency in the documents")
st.pyplot(fig)
"""
def analyse_personal_doc(self):
with st.expander("Analyse your own document"):
st.header("Analyse your own document")
personal_doc = st.text_area(
label="Paste here the document you want to analyse",
value="",
max_chars=10000,
)
is_discarded = False
def is_doc_discarded(key, score):
if key[2]: # max cutoff
return score > key[1]
else:
return score < key[1]
if personal_doc:
st.markdown("Statistics of the document:")
for key in self.keys:
if key[0] == "number_words":
words = ModifyingDocuments.get_words_from_document(
personal_doc,
self.sentencepiece_model_tok,
lower_case=False,
strip_characters=self.param["strip_characters"],
)
if key[2]:
st.markdown(f"Number of words: {len(words)}")
if is_doc_discarded(key, len(words)):
is_discarded = True
elif key[0] == "repetitions_ratio":
repetitions_ratio = Filtering.compute_repetitions_ratio(
personal_doc, int(key[3])
)
repetitions_ratio = round(repetitions_ratio, 3)
st.markdown(f"Repetitions ratio: {repetitions_ratio}")
if is_doc_discarded(key, repetitions_ratio):
is_discarded = True
elif key[0] == "special_characters_ratio":
special_characters_ratio = (
Filtering.compute_special_characters_ratio(
personal_doc, self.param["special_characters"]
)
)
special_characters_ratio = round(special_characters_ratio, 3)
st.markdown(
f"Special characters ratio: {special_characters_ratio}"
)
if is_doc_discarded(key, special_characters_ratio):
is_discarded = True
elif key[0] == "stopwords_ratio":
stopwords_ratio = Filtering.compute_stopwords_ratio(
personal_doc,
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
self.stopwords,
)
stopwords_ratio = round(stopwords_ratio, 3)
st.markdown(f"Stop words ratio: {stopwords_ratio}")
if is_doc_discarded(key, stopwords_ratio):
is_discarded = True
elif key[0] == "flagged_words_ratio":
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
personal_doc,
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
self.flagged_words,
)
flagged_words_ratio = round(flagged_words_ratio, 3)
st.markdown(f"Flagged words ratio: {flagged_words_ratio}")
if is_doc_discarded(key, flagged_words_ratio):
is_discarded = True
elif key[0] == "lang_id_score":
(
lang_pred_dataset_id,
lang_id_score,
) = Filtering.compute_lang_id_pred_score(
personal_doc, self.model_lang_id
)
lang_id_score = round(lang_id_score, 3)
st.markdown(
f"Language identification confidence score: {lang_id_score}"
)
if is_doc_discarded(key, flagged_words_ratio) or (
self.lang_dataset_id != lang_pred_dataset_id
):
is_discarded = True
elif key[0] == "perplexity_score":
perplexity_score = Filtering.compute_perplexity_score(
personal_doc,
self.sentencepiece_model,
self.kenlm_model,
)
perplexity_score = round(perplexity_score, 3)
st.markdown(f"Perplexity score: {perplexity_score}")
if is_doc_discarded(key, perplexity_score):
is_discarded = True
is_discarded = "" if is_discarded else "not "
st.markdown(
f"With the current filtering parameters, this document **is {is_discarded}discarded**."
)
def visualization(self):
self.warning_preamble()
self.preamble()
self.open_data()
self.set_title()
self.filtering_of_docs()
self.filtering_of_words()
self.download_parameters()
self.analyse_personal_doc()
path_instructions = "./explanation_filtering_pipeline.pdf"
path_data = "./en_examples_with_stats.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
max_len_text_display = 10000
# Only useful for analyse_personal_doc
lang_dataset_id = "en"
path_fasttext_model = "./lid.176.bin"
path_sentencepiece_model = "./en.sp.model"
path_kenlm_model = "./en.arpa.bin"
visualization = Visualization(
path_instructions,
path_data,
lang,
num_docs,
num_docs_for_words,
max_len_text_display,
lang_dataset_id,
path_fasttext_model,
path_sentencepiece_model,
path_kenlm_model,
)
visualization.visualization()