hvaldez's picture
first commit
a17aefb verified
from svitt.utils import (
interpolate_pos_embed,
interpolate_pos_relative_bias_beit_3d,
)
from omegaconf import OmegaConf
from transformers import ViTModel, ViTConfig
from svitt.sparse_config import BertConfig, BeitConfig
from svitt.sparse_xbeit import BeitModel
from svitt.sparse_xbert import BertModel, BertForMaskedLM
import torch
from torch import nn
import torch.nn.functional as F
class SViTT(nn.Module):
"""Common utils shared by pretraining and downstream retrieval"""
def __init__(self, config=None, tokenizer=None, pretrain=True, **kwargs):
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.embed_dim = config.embed_dim
self.vision_width = 768
self.text_width = 768
self.pretrain = pretrain
self.vision_encoder, self.vision_layernorm = self.build_vision_encoder()
self.text_encoder = self.build_text_encoder()
self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
self.text_proj = nn.Linear(self.text_width, self.embed_dim)
self.temp = nn.Parameter(torch.ones([]) * config.temp)
self.itm_head = nn.Linear(self.text_width, 2)
def build_text_encoder(self):
bert_config = BertConfig.from_json_file(self.config.bert_config)
# Override params for sparse vision encoder
model_args = getattr(self.config, 'text_encoder_args', {})
if model_args:
model_args = OmegaConf.to_object(model_args)
bert_config.update(model_args)
if self.pretrain:
text_encoder, _ = BertForMaskedLM.from_pretrained(
self.config.text_encoder, config=bert_config,
output_loading_info=True
)
else:
text_encoder, _ = BertModel.from_pretrained(
self.config.text_encoder, config=bert_config,
add_pooling_layer=False, output_loading_info=True
)
return text_encoder
def build_vision_encoder(self):
# if self.config.vit_type in ["beit", "deit", "vit", "vit32"]:
if self.config.vit_type in ["beit"]:
vision_encoder = self.build_huggingface_vit_with_image_size(
self.config.vit_name_or_pretrained_path, self.config.image_res,)
else:
raise ValueError(f"Unknown vit type {self.config.vit_type}")
# add layernorm for normalizing BEiT outputs hidden states
vision_layernorm = None
if self.config.vit_type == "beit":
vision_layernorm = nn.LayerNorm(self.vision_width, eps=1e-12)
return vision_encoder, vision_layernorm
# @classmethod
# def build_huggingface_vit_with_image_size(cls, model_card: str, image_size: int):
def build_huggingface_vit_with_image_size(self, model_card: str, image_size: int):
"""Build a vit model from huggingface hub, also interpolate pos_embed when needed.
Args:
model_card: name in huggingface hub, e.g., `facebook/deit-base-patch16-224`
image_size: new image size, may be different from pre-training image_size of `model_card`
ref: https://github.com/huggingface/transformers/issues/12167#issuecomment-861356232
"""
is_beit = "beit" in model_card
if "beit" in model_card:
model_cls, config_cls = BeitModel, BeitConfig
elif "deit" in model_card or "vit" in model_card:
# the deit model we use is loaded in vit arch,
# see https://huggingface.co/facebook/deit-base-patch16-224#how-to-use
model_cls, config_cls = ViTModel, ViTConfig
else:
raise ValueError(f"Unexpected model_card: {model_card}")
# BEiT uses average pooled tokens instead of [CLS] used by other models
tmp_model = model_cls.from_pretrained(model_card, add_pooling_layer=is_beit)
state_dict = tmp_model.state_dict()
del tmp_model
# Override params for sparse vision encoder
model_args = getattr(self.config, 'vision_encoder_args', {})
if model_args:
model_args = OmegaConf.to_object(model_args)
model_config = config_cls.from_pretrained(
model_card,
image_size=image_size,
**model_args,
)
model = model_cls(config=model_config, add_pooling_layer=is_beit, num_frames=self.config.video_input.num_frames)
if is_beit:
# interpolate relative pos bias
state_dict = interpolate_pos_relative_bias_beit_3d(
state_dict_old=state_dict,
state_dict_new=model.state_dict(),
patch_shape_new=model.window_size
)
else:
# interpolate pos_embed and load weights to new model
state_dict["embeddings.position_embeddings"] = interpolate_pos_embed(
pos_embed_old=state_dict["embeddings.position_embeddings"],
pos_embed_new=model.embeddings.position_embeddings,
num_patches_new=model.embeddings.patch_embeddings.num_patches
)
msg = model.load_state_dict(state_dict, strict=False)
return model
def get_text_encoder(self):
"""get text encoder, used for text and cross-modal encoding"""
encoder = self.text_encoder
return encoder.bert if hasattr(encoder, "bert") else encoder
def encode_image(self, video, output_token_idx=False, output_attentions=False):
video_embeds = self.vision_encoder(video, output_token_idx=output_token_idx, output_attentions=output_attentions) # (bsz, seq_len, d)
if self.vision_layernorm is not None: # only for BEiT mean-pooling
video_embeds.last_hidden_state = self.vision_layernorm(video_embeds.last_hidden_state)
if output_token_idx:
token_idx = video_embeds.token_idx
if output_attentions:
attentions = video_embeds.attentions
if self.config.vit_type == "beit":
pooled_video_embeds = video_embeds.pooler_output # (bsz*num_frms, d)
video_embeds = video_embeds.last_hidden_state # (bsz*num_frms, L, d)
else:
video_embeds = video_embeds.last_hidden_state
pooled_video_embeds = video_embeds[:, 0]
outputs = (video_embeds, pooled_video_embeds)
if output_token_idx:
outputs += (token_idx,)
if output_attentions:
outputs += (attentions,)
return outputs
def _encode_image(self, image):
bsz, num_frms, c, h, w = image.shape # `num_frms` could be changing for image (=1) or video (e.g., =4)
image = image.view(bsz*num_frms, c, h, w)
image_embeds = self.vision_encoder(image)
if self.vision_layernorm is not None: # only for BEiT mean-pooling
image_embeds.last_hidden_state = self.vision_layernorm(image_embeds.last_hidden_state)
if self.config.vit_type == "beit":
pooled_image_embeds = image_embeds.pooler_output # (bsz*num_frms, d)
image_embeds = image_embeds.last_hidden_state # (bsz*num_frms, L, d)
else:
image_embeds = image_embeds.last_hidden_state
pooled_image_embeds = image_embeds[:, 0]
image_embeds = image_embeds.view(bsz, num_frms, -1, self.vision_width) # (bsz, num_frms, L, d)
pooled_image_embeds = pooled_image_embeds.view(bsz, num_frms, self.vision_width) \
if pooled_image_embeds is not None else None # (bsz, num_frms, d)
return image_embeds, pooled_image_embeds
def encode_text(self, text):
text_output = self.get_text_encoder()(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode='text'
)
text_embeds = text_output.last_hidden_state
pooled_text_embeds = text_embeds[:, 0]
return text_embeds, pooled_text_embeds
@torch.no_grad()
def clip_contrastive_temperature(self, min_val=0.001, max_val=0.5):
"""Seems only used during pre-training"""
self.temp.clamp_(min_val, max_val)
@torch.no_grad()
def get_mask(self, sim, idx=None, normalize=False):
"""
sim: (N, N)
idx: (N, )
normalize: bool, make row sum equal to 1
"""
if idx is not None:
idx = idx.view(-1, 1)
mask = torch.eq(idx, idx.T).to(sim.dtype)
if normalize:
mask = mask / mask.sum(1, keepdim=True)
else:
mask = torch.zeros_like(sim)
mask.fill_diagonal_(1)
return mask # `1` mark valid/matched location
def get_contrastive_loss(self, pooled_image_embeds, pooled_text_embeds, idx=None):
sim_i2t, sim_t2i = self.get_sim(
pooled_image_embeds, pooled_text_embeds, t=self.temp)
with torch.no_grad():
sim_i2t_targets = self.get_mask(sim_i2t, idx=idx, normalize=True)
sim_t2i_targets = sim_i2t_targets
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1).mean()
loss_ita = (loss_i2t + loss_t2i) / 2
return loss_ita, sim_i2t, sim_t2i
def get_sim(self, pooled_image_embeds, pooled_text_embeds, t=1):
"""
Args:
pooled_image_embeds: (bsz, num_frms, d)
pooled_text_embeds: (bsz, d)
t: temperature
"""
image_proj = self.vision_proj
text_proj = self.text_proj
image_feat = F.normalize(image_proj(pooled_image_embeds), dim=-1)
text_feat = F.normalize(text_proj(pooled_text_embeds), dim=-1)
if image_feat.ndim == 3:
sim_i2t = torch.einsum("mld,nd->mln", image_feat, text_feat).mean(1) / t # (N, N)
else:
sim_i2t = torch.einsum("md,nd ->mn", image_feat, text_feat) / t # (N, N)
sim_t2i = sim_i2t.T
return sim_i2t, sim_t2i
def get_itm_loss(self,
sim_i2t,
sim_t2i,
text_embeds,
text_atts,
image_embeds,
image_atts,
idx=None,
):
"""
sim_i2t, sim_t2i: (N, N)
text_embeds, text_atts, image_embeds, image_atts: (N, *)
idx: (N, )
"""
bsz = len(sim_i2t)
with torch.no_grad():
weights_i2t = F.softmax(sim_i2t+1e-4, dim=1) # (N, N)
weights_t2i = F.softmax(sim_t2i+1e-4, dim=1)
mask = self.get_mask(sim_i2t, idx=idx).bool()
weights_i2t.masked_fill_(mask, 0)
weights_t2i.masked_fill_(mask, 0)
# select a negative image for each text
if self.config.itm_hard_neg:
img_neg_indices = torch.multinomial(weights_t2i, 1).squeeze() #RuntimeError: invalid multinomial distribution (sum of probabilities <= 0)
else:
img_neg_indices = self.get_rand_indices(mask, 1).squeeze()
image_embeds_neg = image_embeds[img_neg_indices]
# select a negative text for each image
if self.config.itm_hard_neg:
txt_neg_indices = torch.multinomial(weights_i2t, 1).squeeze()
else:
txt_neg_indices = self.get_rand_indices(mask, 1).squeeze()
text_embeds_neg = text_embeds[txt_neg_indices]
text_atts_neg = text_atts[txt_neg_indices] # (N, L, d)
# embedding on local gpu
_text_embeds = text_embeds
_text_atts = text_atts
_image_embeds = image_embeds
_image_atts = image_atts
# concat embeddings
text_embeds_all = torch.cat([_text_embeds, _text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([_text_atts, _text_atts, text_atts_neg], dim=0)
image_embeds_all = torch.cat([_image_embeds, image_embeds_neg, _image_embeds], dim=0)
image_atts_all = torch.cat([_image_atts, _image_atts, _image_atts], dim=0)
text_encoder = self.get_text_encoder()
output = text_encoder(
encoder_embeds=text_embeds_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
mode='fusion',
)
itm_embeds = output.last_hidden_state[:, 0] # pos (N, d) + neg (2N, d)
loss_itm = self._get_itm_loss(itm_embeds, enc=self.itm_head)
itm_embeds_pos = itm_embeds[:bsz] # (N, d)
return loss_itm, itm_embeds_pos
def _get_itm_loss(self, itm_embeds, enc):
"""
itm_embeds: (3*N, D)
enc: nn.Module that projects cls_embeds
"""
itm_scores = enc(itm_embeds) # (3*N, 2)
bs = itm_scores.size(0) // 3
itm_labels = itm_scores.new_ones(3*bs, dtype=torch.long)
itm_labels[bs:] = 0
loss_itm = F.cross_entropy(itm_scores, itm_labels)
return loss_itm
def get_rand_indices(self, mask, k):
"""
Args:
mask: (N, L) 0 indicates the positions that we can sample, 1 otherwise
k: #indices to sample at each row
Returns:
(N, k) indices
"""
mask = mask.float()
mask = mask - 10000 * mask
mask += torch.randn_like(mask)
_, indices = torch.sort(mask, dim=1, descending=True)
indices = indices[:, :k].contiguous()
return indices