Spaces:
Runtime error
Runtime error
File size: 5,820 Bytes
cfde09c f8fdc71 cfde09c 083d030 f8fdc71 cfde09c f8fdc71 89ae773 f8fdc71 cfde09c f8fdc71 cfde09c f8fdc71 42951b3 cfde09c 42951b3 f8fdc71 cfde09c dd27380 cfde09c f8fdc71 cfde09c f8fdc71 cfde09c f8fdc71 cfde09c f8fdc71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import random
import shlex
import subprocess
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
if os.environ.get('SYSTEM') == 'spaces':
with open('patch') as f:
subprocess.run(shlex.split('patch -p1'),
cwd='stylegan2-pytorch',
stdin=f)
if not torch.cuda.is_available():
with open('patch-cpu') as f:
subprocess.run(shlex.split('patch -p1'),
cwd='stylegan2-pytorch',
stdin=f)
sys.path.insert(0, 'stylegan2-pytorch')
from model import Generator
DESCRIPTION = '''# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) interpolation
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
'''
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def load_model(device: torch.device) -> nn.Module:
model = Generator(512, 1024, 4, channel_multiplier=2)
path = hf_hub_download('public-data/TADNE',
'models/aydao-anime-danbooru2019s-512-5268480.pt')
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['g_ema'])
model.eval()
model.to(device)
model.latent_avg = checkpoint['latent_avg'].to(device)
with torch.inference_mode():
z = torch.zeros((1, model.style_dim)).to(device)
model([z], truncation=0.7, truncation_latent=model.latent_avg)
return model
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
randomize_noise: bool) -> np.ndarray:
out, _ = model([z],
truncation=truncation_psi,
truncation_latent=model.latent_avg,
randomize_noise=randomize_noise)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
@torch.inference_mode()
def generate_interpolated_images(seed0: int, seed1: int, num_intermediate: int,
psi0: float, psi1: float,
randomize_noise: bool, model: nn.Module,
device: torch.device) -> list[np.ndarray]:
seed0 = int(np.clip(seed0, 0, MAX_SEED))
seed1 = int(np.clip(seed1, 0, MAX_SEED))
z0 = generate_z(model.style_dim, seed0, device)
z1 = generate_z(model.style_dim, seed1, device)
vec = z1 - z0
dvec = vec / (num_intermediate + 1)
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
dpsi = (psi1 - psi0) / (num_intermediate + 1)
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
res = []
for z, psi in zip(zs, psis):
out = generate_image(model, z, psi, randomize_noise)
res.append(out)
return res
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
fn = functools.partial(generate_interpolated_images,
model=model,
device=device)
examples = [
[29703, 55376, 3, 0.7, 0.7, False],
[34141, 36864, 5, 0.7, 0.7, False],
[74650, 88322, 7, 0.7, 0.7, False],
[84314, 70317410, 9, 0.7, 0.7, False],
[55376, 55376, 5, 0.3, 1.3, False],
]
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
seed_1 = gr.Slider(label='Seed 1',
minimum=0,
maximum=MAX_SEED,
step=1,
value=29703)
seed_2 = gr.Slider(label='Seed 2',
minimum=0,
maximum=MAX_SEED,
step=1,
value=55376)
num_intermediate_frames = gr.Slider(
label='Number of Intermediate Frames',
minimum=1,
maximum=21,
step=1,
value=3,
)
psi_1 = gr.Slider(label='Truncation psi 1',
minimum=0,
maximum=2,
step=0.05,
value=0.7)
psi_2 = gr.Slider(label='Truncation psi 2',
minimum=0,
maximum=2,
step=0.05,
value=0.7)
randomize_noise = gr.Checkbox(label='Randomize Noise', value=False)
run_button = gr.Button('Run')
with gr.Column():
result = gr.Gallery(label='Output')
inputs = [
seed_1,
seed_2,
num_intermediate_frames,
psi_1,
psi_2,
randomize_noise,
]
gr.Examples(
examples=examples,
inputs=inputs,
outputs=result,
fn=fn,
cache_examples=os.getenv('CACHE_EXAMPLES') == '1',
)
run_button.click(
fn=fn,
inputs=inputs,
outputs=result,
api_name='run',
)
demo.queue(max_size=10).launch()
|