File size: 5,820 Bytes
cfde09c
 
 
 
 
 
f8fdc71
 
cfde09c
 
 
 
 
 
 
 
 
 
083d030
f8fdc71
 
 
 
 
 
 
 
cfde09c
 
 
 
 
f8fdc71
89ae773
 
 
 
 
 
 
f8fdc71
 
cfde09c
 
f8fdc71
 
 
 
cfde09c
 
 
 
f8fdc71
42951b3
cfde09c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42951b3
 
 
 
f8fdc71
 
cfde09c
 
 
 
 
 
 
 
 
 
 
 
dd27380
cfde09c
 
f8fdc71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfde09c
f8fdc71
cfde09c
f8fdc71
 
 
 
cfde09c
f8fdc71
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python

from __future__ import annotations

import functools
import os
import random
import shlex
import subprocess
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

if os.environ.get('SYSTEM') == 'spaces':
    with open('patch') as f:
        subprocess.run(shlex.split('patch -p1'),
                       cwd='stylegan2-pytorch',
                       stdin=f)
    if not torch.cuda.is_available():
        with open('patch-cpu') as f:
            subprocess.run(shlex.split('patch -p1'),
                           cwd='stylegan2-pytorch',
                           stdin=f)

sys.path.insert(0, 'stylegan2-pytorch')

from model import Generator

DESCRIPTION = '''# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) interpolation

Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
'''

MAX_SEED = np.iinfo(np.int32).max


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def load_model(device: torch.device) -> nn.Module:
    model = Generator(512, 1024, 4, channel_multiplier=2)
    path = hf_hub_download('public-data/TADNE',
                           'models/aydao-anime-danbooru2019s-512-5268480.pt')
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint['g_ema'])
    model.eval()
    model.to(device)
    model.latent_avg = checkpoint['latent_avg'].to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.style_dim)).to(device)
        model([z], truncation=0.7, truncation_latent=model.latent_avg)
    return model


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
                   randomize_noise: bool) -> np.ndarray:
    out, _ = model([z],
                   truncation=truncation_psi,
                   truncation_latent=model.latent_avg,
                   randomize_noise=randomize_noise)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


@torch.inference_mode()
def generate_interpolated_images(seed0: int, seed1: int, num_intermediate: int,
                                 psi0: float, psi1: float,
                                 randomize_noise: bool, model: nn.Module,
                                 device: torch.device) -> list[np.ndarray]:
    seed0 = int(np.clip(seed0, 0, MAX_SEED))
    seed1 = int(np.clip(seed1, 0, MAX_SEED))

    z0 = generate_z(model.style_dim, seed0, device)
    z1 = generate_z(model.style_dim, seed1, device)
    vec = z1 - z0
    dvec = vec / (num_intermediate + 1)
    zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
    dpsi = (psi1 - psi0) / (num_intermediate + 1)
    psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
    res = []
    for z, psi in zip(zs, psis):
        out = generate_image(model, z, psi, randomize_noise)
        res.append(out)
    return res


device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
fn = functools.partial(generate_interpolated_images,
                       model=model,
                       device=device)

examples = [
    [29703, 55376, 3, 0.7, 0.7, False],
    [34141, 36864, 5, 0.7, 0.7, False],
    [74650, 88322, 7, 0.7, 0.7, False],
    [84314, 70317410, 9, 0.7, 0.7, False],
    [55376, 55376, 5, 0.3, 1.3, False],
]

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            seed_1 = gr.Slider(label='Seed 1',
                               minimum=0,
                               maximum=MAX_SEED,
                               step=1,
                               value=29703)
            seed_2 = gr.Slider(label='Seed 2',
                               minimum=0,
                               maximum=MAX_SEED,
                               step=1,
                               value=55376)
            num_intermediate_frames = gr.Slider(
                label='Number of Intermediate Frames',
                minimum=1,
                maximum=21,
                step=1,
                value=3,
            )
            psi_1 = gr.Slider(label='Truncation psi 1',
                              minimum=0,
                              maximum=2,
                              step=0.05,
                              value=0.7)
            psi_2 = gr.Slider(label='Truncation psi 2',
                              minimum=0,
                              maximum=2,
                              step=0.05,
                              value=0.7)
            randomize_noise = gr.Checkbox(label='Randomize Noise', value=False)
            run_button = gr.Button('Run')
        with gr.Column():
            result = gr.Gallery(label='Output')

    inputs = [
        seed_1,
        seed_2,
        num_intermediate_frames,
        psi_1,
        psi_2,
        randomize_noise,
    ]
    gr.Examples(
        examples=examples,
        inputs=inputs,
        outputs=result,
        fn=fn,
        cache_examples=os.getenv('CACHE_EXAMPLES') == '1',
    )
    run_button.click(
        fn=fn,
        inputs=inputs,
        outputs=result,
        api_name='run',
    )
demo.queue(max_size=10).launch()