hysts's picture
hysts HF staff
Add files
a038241
raw
history blame
4.38 kB
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import pathlib
import sys
import urllib.request
from typing import Union
import cv2
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
sys.path.insert(0, 'face_detection')
from ibug.face_detection import RetinaFacePredictor, S3FDPredictor
REPO_URL = 'https://github.com/ibug-group/face_detection'
TITLE = 'ibug-group/face_detection'
DESCRIPTION = f'This is a demo for {REPO_URL}.'
ARTICLE = None
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--face-score-slider-step', type=float, default=0.05)
parser.add_argument('--face-score-threshold', type=float, default=0.8)
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def load_model(
model_name: str, threshold: float,
device: torch.device) -> Union[RetinaFacePredictor, S3FDPredictor]:
if model_name == 's3fd':
model = S3FDPredictor(threshold=threshold, device=device)
else:
model_name = model_name.replace('retinaface_', '')
model = RetinaFacePredictor(
threshold=threshold,
device=device,
model=RetinaFacePredictor.get_model(model_name))
return model
def detect(image: np.ndarray, model_name: str, face_score_threshold: float,
detectors: dict[str, nn.Module]) -> np.ndarray:
model = detectors[model_name]
model.threshold = face_score_threshold
# RGB -> BGR
image = image[:, :, ::-1]
preds = model(image, rgb=False)
res = image.copy()
for pred in preds:
box = np.round(pred[:4]).astype(int)
line_width = max(2, int(3 * (box[2:] - box[:2]).max() / 256))
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0),
line_width)
if len(pred) == 15:
pts = pred[5:].reshape(-1, 2)
for pt in np.round(pts).astype(int):
cv2.circle(res, tuple(pt), line_width, (0, 255, 0), cv2.FILLED)
return res[:, :, ::-1]
def main():
gr.close_all()
args = parse_args()
device = torch.device(args.device)
model_names = [
'retinaface_mobilenet0.25',
'retinaface_resnet50',
's3fd',
]
detectors = {
name: load_model(name,
threshold=args.face_score_threshold,
device=device)
for name in model_names
}
func = functools.partial(detect, detectors=detectors)
func = functools.update_wrapper(func, detect)
image_path = pathlib.Path('selfie.jpg')
if not image_path.exists():
url = 'https://raw.githubusercontent.com/peiyunh/tiny/master/data/demo/selfie.jpg'
urllib.request.urlretrieve(url, image_path)
examples = [[image_path.as_posix(), model_names[1], 0.8]]
gr.Interface(
func,
[
gr.inputs.Image(type='numpy', label='Input'),
gr.inputs.Radio(model_names,
type='value',
default='retinaface_resnet50',
label='Model'),
gr.inputs.Slider(0,
1,
step=args.face_score_slider_step,
default=args.face_score_threshold,
label='Face Score Threshold'),
],
gr.outputs.Image(type='numpy', label='Output'),
examples=examples,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()