Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import pathlib | |
import sys | |
import urllib.request | |
from typing import Union | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
sys.path.insert(0, 'face_detection') | |
from ibug.face_detection import RetinaFacePredictor, S3FDPredictor | |
REPO_URL = 'https://github.com/ibug-group/face_detection' | |
TITLE = 'ibug-group/face_detection' | |
DESCRIPTION = f'This is a demo for {REPO_URL}.' | |
ARTICLE = None | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--face-score-slider-step', type=float, default=0.05) | |
parser.add_argument('--face-score-threshold', type=float, default=0.8) | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
def load_model( | |
model_name: str, threshold: float, | |
device: torch.device) -> Union[RetinaFacePredictor, S3FDPredictor]: | |
if model_name == 's3fd': | |
model = S3FDPredictor(threshold=threshold, device=device) | |
else: | |
model_name = model_name.replace('retinaface_', '') | |
model = RetinaFacePredictor( | |
threshold=threshold, | |
device=device, | |
model=RetinaFacePredictor.get_model(model_name)) | |
return model | |
def detect(image: np.ndarray, model_name: str, face_score_threshold: float, | |
detectors: dict[str, nn.Module]) -> np.ndarray: | |
model = detectors[model_name] | |
model.threshold = face_score_threshold | |
# RGB -> BGR | |
image = image[:, :, ::-1] | |
preds = model(image, rgb=False) | |
res = image.copy() | |
for pred in preds: | |
box = np.round(pred[:4]).astype(int) | |
line_width = max(2, int(3 * (box[2:] - box[:2]).max() / 256)) | |
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), | |
line_width) | |
if len(pred) == 15: | |
pts = pred[5:].reshape(-1, 2) | |
for pt in np.round(pts).astype(int): | |
cv2.circle(res, tuple(pt), line_width, (0, 255, 0), cv2.FILLED) | |
return res[:, :, ::-1] | |
def main(): | |
gr.close_all() | |
args = parse_args() | |
device = torch.device(args.device) | |
model_names = [ | |
'retinaface_mobilenet0.25', | |
'retinaface_resnet50', | |
's3fd', | |
] | |
detectors = { | |
name: load_model(name, | |
threshold=args.face_score_threshold, | |
device=device) | |
for name in model_names | |
} | |
func = functools.partial(detect, detectors=detectors) | |
func = functools.update_wrapper(func, detect) | |
image_path = pathlib.Path('selfie.jpg') | |
if not image_path.exists(): | |
url = 'https://raw.githubusercontent.com/peiyunh/tiny/master/data/demo/selfie.jpg' | |
urllib.request.urlretrieve(url, image_path) | |
examples = [[image_path.as_posix(), model_names[1], 0.8]] | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.Image(type='numpy', label='Input'), | |
gr.inputs.Radio(model_names, | |
type='value', | |
default='retinaface_resnet50', | |
label='Model'), | |
gr.inputs.Slider(0, | |
1, | |
step=args.face_score_slider_step, | |
default=args.face_score_threshold, | |
label='Face Score Threshold'), | |
], | |
gr.outputs.Image(type='numpy', label='Output'), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
theme=args.theme, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |