Spaces:
Running
on
L40S
Running
on
L40S
File size: 16,535 Bytes
ef198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import cv2
import numpy as np
import os
import trimesh
import argparse
import torch
import scipy
from PIL import Image
from refine.mesh_refine import geo_refine
from refine.func import make_star_cameras_orthographic
from refine.render import NormalsRenderer, calc_vertex_normals
from pytorch3d.structures import Meshes
from sklearn.neighbors import KDTree
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=64,
pred_iou_thresh=0.80,
stability_score_thresh=0.92,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100,
)
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
np_color = np.clip(np_color, 0, 1)
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
def calc_horizontal_offset(target_img, source_img):
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
def calc_horizontal_offset2(target_mask, source_img):
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
def get_distract_mask(color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20):
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres
if normal_0 is not None and normal_1 is not None:
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres
labeled_array, num_features = scipy.ndimage.label(distract_area)
results = []
random_sampled_points = []
for i in range(num_features + 1):
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000:
results.append((i, np.sum(labeled_array == i)))
# random sample a point in the area
points = np.argwhere(labeled_array == i)
random_sampled_points.append(points[np.random.randint(0, points.shape[0])])
results = sorted(results, key=lambda x: x[1], reverse=True) # [1:]
distract_mask = np.zeros_like(distract_area)
distract_bbox = np.zeros_like(distract_area)
for i, _ in results:
distract_mask |= labeled_array == i
bbox = np.argwhere(labeled_array == i)
min_x, min_y = bbox.min(axis=0)
max_x, max_y = bbox.max(axis=0)
distract_bbox[min_x:max_x, min_y:max_y] = 1
points = np.array(random_sampled_points)[:, ::-1]
labels = np.ones(len(points), dtype=np.int32)
masks = generator.generate((color_1 * 255).astype(np.uint8))
outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres
final_mask = np.zeros_like(distract_mask)
for iii, mask in enumerate(masks):
mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5
intersection = np.logical_and(mask['segmentation'], distract_mask).sum()
total = mask['segmentation'].sum()
iou = intersection / total
outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum()
outside_total = mask['segmentation'].sum()
outside_iou = outside_intersection / outside_total
if iou > ratio and outside_iou < outside_ratio:
final_mask |= mask['segmentation']
# calculate coverage
intersection = np.logical_and(final_mask, distract_mask).sum()
total = distract_mask.sum()
coverage = intersection / total
if coverage < 0.8:
# use original distract mask
final_mask = (distract_mask.copy() * 255).astype(np.uint8)
final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3)
labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask)
for i in range(num_features_dilate + 1):
if np.sum(labeled_array_dilate == i) < 200:
final_mask[labeled_array_dilate == i] = 255
final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3)
final_mask = final_mask > 127
return distract_mask, distract_bbox, random_sampled_points, final_mask
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input_mv_dir', type=str, default='result/multiview')
parser.add_argument('--input_obj_dir', type=str, default='result/slrm')
parser.add_argument('--output_dir', type=str, default='result/refined')
parser.add_argument('--outside_ratio', type=float, default=0.20)
parser.add_argument('--no_decompose', action='store_true')
args = parser.parse_args()
for test_idx in os.listdir(args.input_mv_dir):
mv_root_dir = os.path.join(args.input_mv_dir, test_idx)
obj_dir = os.path.join(args.input_obj_dir, test_idx)
fixed_v, fixed_f = None, None
flow_vert, flow_vector = None, None
last_colors, last_normals = None, None
last_front_color, last_front_normal = None, None
distract_mask = None
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,(1024,1024))
if not args.no_decompose:
for name_idx, level in zip([3, 1, 2], [2, 1, 0]):
mesh = trimesh.load(obj_dir + f'_{name_idx}.obj')
new_mesh = mesh.split(only_watertight=False)
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ]
mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
mesh_v, mesh_f = mesh.vertices, mesh.faces
if last_colors is None:
images = renderer.render(
torch.tensor(mesh_v, device='cuda').float(),
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
torch.tensor(mesh_f, device='cuda'),
)
mask = (images[..., 3] < 0.9).cpu().numpy()
colors, normals = [], []
for i in range(6):
color_path = os.path.join(mv_root_dir, f'level{level}', f'color_{i}.png')
normal_path = os.path.join(mv_root_dir, f'level{level}', f'normal_{i}.png')
color = cv2.imread(color_path)
normal = cv2.imread(normal_path)
color = color[..., ::-1]
normal = normal[..., ::-1]
if last_colors is not None:
offset = calc_horizontal_offset(np.array(last_colors[i]), color)
# print('offset', i, offset)
else:
offset = calc_horizontal_offset2(mask[i], color)
# print('init offset', i, offset)
if offset != 0:
color = np.roll(color, offset, axis=1)
normal = np.roll(normal, offset, axis=1)
color = Image.fromarray(color)
normal = Image.fromarray(normal)
colors.append(color)
normals.append(normal)
if last_front_color is not None and level == 0:
original_mask, distract_bbox, _, distract_mask = get_distract_mask(last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=args.outside_ratio)
cv2.imwrite(f'{args.output_dir}/{test_idx}/distract_mask.png', distract_mask.astype(np.uint8) * 255)
else:
distract_mask = None
distract_bbox = None
last_front_color = np.array(colors[0]).astype(np.float32) / 255.0
last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0
if last_colors is None:
from copy import deepcopy
last_colors, last_normals = deepcopy(colors), deepcopy(normals)
# my mesh flow weight by nearest vertexs
if fixed_v is not None and fixed_f is not None and level == 1:
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(mesh_v)
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
mesh_v += weighted_vec_anchor.cpu().numpy()
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
mesh_f = torch.tensor(mesh_f, device='cuda')
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox)
# my mesh flow weight by nearest vertexs
try:
if fixed_v is not None and fixed_f is not None and level != 0:
new_mesh_v = new_mesh.verts_packed().cpu().numpy()
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(new_mesh_v)
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; new_mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
new_mesh_v += weighted_vec_anchor.cpu().numpy()
# replace new_mesh verts with new_mesh_v
new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures)
except Exception as e:
pass
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
save_py3dmesh_with_trimesh_fast(new_mesh, f'{args.output_dir}/{test_idx}/out_{level}.glb', apply_sRGB_to_LinearRGB=False)
if fixed_v is None:
fixed_v, fixed_f = simp_v, simp_f
else:
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
else:
mesh = trimesh.load(obj_dir + f'_0.obj')
mesh_v, mesh_f = mesh.vertices, mesh.faces
images = renderer.render(
torch.tensor(mesh_v, device='cuda').float(),
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
torch.tensor(mesh_f, device='cuda'),
)
mask = (images[..., 3] < 0.9).cpu().numpy()
colors, normals = [], []
for i in range(6):
color_path = os.path.join(mv_root_dir, f'level0', f'color_{i}.png')
normal_path = os.path.join(mv_root_dir, f'level0', f'normal_{i}.png')
color = cv2.imread(color_path)
normal = cv2.imread(normal_path)
color = color[..., ::-1]
normal = normal[..., ::-1]
offset = calc_horizontal_offset2(mask[i], color)
if offset != 0:
color = np.roll(color, offset, axis=1)
normal = np.roll(normal, offset, axis=1)
color = Image.fromarray(color)
normal = Image.fromarray(normal)
colors.append(color)
normals.append(normal)
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
mesh_f = torch.tensor(mesh_f, device='cuda')
new_mesh, _, _ = geo_refine(mesh_v, mesh_f, colors, normals, no_decompose=True, expansion_weight=0.)
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
save_py3dmesh_with_trimesh_fast(new_mesh, f'{args.output_dir}/{test_idx}/out_nodecomp.glb', apply_sRGB_to_LinearRGB=False)
|