Spaces:
Running
on
L40S
Running
on
L40S
File size: 9,579 Bytes
ef198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import argparse
import os
import cv2
import glob
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, Optional, List
from omegaconf import OmegaConf, DictConfig
from PIL import Image
from pathlib import Path
from dataclasses import dataclass
from typing import Dict
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.utils import make_grid, save_image
from accelerate.utils import set_seed
from tqdm.auto import tqdm
from einops import rearrange, repeat
from multiview.pipeline_multiclass import StableUnCLIPImg2ImgPipeline
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def tensor_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
def nonzero_normalize_depth(depth, mask=None):
if mask.max() > 0: # not all transparent
nonzero_depth_min = depth[mask > 0].min()
else:
nonzero_depth_min = 0
depth = (depth - nonzero_depth_min) / depth.max()
return np.clip(depth, 0, 1)
class SingleImageData(Dataset):
def __init__(self,
input_dir,
prompt_embeds_path='./multiview/fixed_prompt_embeds_6view',
image_transforms=[],
total_views=6,
ext="png",
return_paths=True,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.input_dir = Path(input_dir)
self.return_paths = return_paths
self.total_views = total_views
self.paths = glob.glob(str(self.input_dir / f'*.{ext}'))
print('============= length of dataset %d =============' % len(self.paths))
self.tform = image_transforms
self.normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
def __len__(self):
return len(self.paths)
def load_rgb(self, path, color):
img = plt.imread(path)
img = Image.fromarray(np.uint8(img * 255.))
new_img = Image.new("RGB", (1024, 1024))
# white background
width, height = img.size
new_width = int(width / height * 1024)
img = img.resize((new_width, 1024))
new_img.paste((255, 255, 255), (0, 0, 1024, 1024))
offset = (1024 - new_width) // 2
new_img.paste(img, (offset, 0))
return new_img
def __getitem__(self, index):
data = {}
filename = self.paths[index]
if self.return_paths:
data["path"] = str(filename)
color = 1.0
cond_im_rgb = self.process_im(self.load_rgb(filename, color))
cond_im_rgb = torch.stack([cond_im_rgb] * self.total_views, dim=0)
data["image_cond_rgb"] = cond_im_rgb
data["normal_prompt_embeddings"] = self.normal_text_embeds
data["color_prompt_embeddings"] = self.color_text_embeds
data["filename"] = filename.split('/')[-1]
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
def tensor_to_image(self, tensor):
return Image.fromarray(np.uint8(tensor.numpy() * 255.))
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
pretrained_unet_path:Optional[str]
revision: Optional[str]
validation_dataset: Dict
save_dir: str
seed: Optional[int]
validation_batch_size: int
dataloader_num_workers: int
save_mode: str
local_rank: int
pipe_kwargs: Dict
pipe_validation_kwargs: Dict
unet_from_pretrained_kwargs: Dict
validation_grid_nrow: int
camera_embedding_lr_mult: float
num_views: int
camera_embedding_type: str
pred_type: str
regress_elevation: bool
enable_xformers_memory_efficient_attention: bool
cond_on_normals: bool
cond_on_colors: bool
regress_elevation: bool
regress_focal_length: bool
def convert_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
def save_image(tensor, fp):
ndarr = convert_to_numpy(tensor)
save_image_numpy(ndarr, fp)
return ndarr
def save_image_numpy(ndarr, fp):
im = Image.fromarray(ndarr)
# pad to square
if im.size[0] != im.size[1]:
size = max(im.size)
new_im = Image.new("RGB", (size, size))
# set to white
new_im.paste((255, 255, 255), (0, 0, size, size))
new_im.paste(im, ((size - im.size[0]) // 2, (size - im.size[1]) // 2))
im = new_im
# resize to 1024x1024
im = im.resize((1024, 1024), Image.LANCZOS)
im.save(fp)
def run_multiview_infer(dataloader, pipeline, cfg: TestConfig, save_dir, num_levels=3):
if cfg.seed is None:
generator = None
else:
generator = torch.Generator(device=pipeline.unet.device).manual_seed(cfg.seed)
images_cond = []
for _, batch in tqdm(enumerate(dataloader)):
torch.cuda.empty_cache()
images_cond.append(batch['image_cond_rgb'][:, 0].cuda())
imgs_in = torch.cat([batch['image_cond_rgb']]*2, dim=0).cuda()
num_views = imgs_in.shape[1]
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
target_h, target_w = imgs_in.shape[-2], imgs_in.shape[-1]
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'].cuda(), batch['color_prompt_embeddings'].cuda()
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
# B*Nv images
unet_out = pipeline(
imgs_in, None, prompt_embeds=prompt_embeddings,
generator=generator, guidance_scale=3.0, output_type='pt', num_images_per_prompt=1,
height=cfg.height, width=cfg.width,
num_inference_steps=40, eta=1.0,
num_levels=num_levels,
)
for level in range(num_levels):
out = unet_out[level].images
bsz = out.shape[0] // 2
normals_pred = out[:bsz]
images_pred = out[bsz:]
cur_dir = save_dir
os.makedirs(cur_dir, exist_ok=True)
for i in range(bsz//num_views):
scene = batch['filename'][i].split('.')[0]
scene_dir = os.path.join(cur_dir, scene, f'level{level}')
os.makedirs(scene_dir, exist_ok=True)
img_in_ = images_cond[-1][i].to(out.device)
for j in range(num_views):
view = VIEWS[j]
idx = i*num_views + j
normal = normals_pred[idx]
color = images_pred[idx]
## save color and normal---------------------
normal_filename = f"normal_{j}.png"
rgb_filename = f"color_{j}.png"
save_image(normal, os.path.join(scene_dir, normal_filename))
save_image(color, os.path.join(scene_dir, rgb_filename))
torch.cuda.empty_cache()
def load_multiview_pipeline(cfg):
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
cfg.pretrained_path,
torch_dtype=torch.float16,)
pipeline.unet.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipeline.to(device)
return pipeline
def main(
cfg: TestConfig
):
set_seed(cfg.seed)
pipeline = load_multiview_pipeline(cfg)
if torch.cuda.is_available():
pipeline.to(device)
image_transforms = [transforms.Resize(int(max(cfg.height, cfg.width))),
transforms.CenterCrop((cfg.height, cfg.width)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2. - 1),
]
image_transforms = transforms.Compose(image_transforms)
dataset = SingleImageData(image_transforms=image_transforms, input_dir=cfg.input_dir, total_views=cfg.num_views)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=False, num_workers=1
)
os.makedirs(cfg.output_dir, exist_ok=True)
with torch.no_grad():
run_multiview_infer(dataloader, pipeline, cfg, cfg.output_dir, num_levels=cfg.num_levels)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--num_views", type=int, default=6)
parser.add_argument("--num_levels", type=int, default=3)
parser.add_argument("--pretrained_path", type=str, default='./ckpt/StdGEN-multiview-1024')
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--width", type=int, default=576)
parser.add_argument("--input_dir", type=str, default='./result/apose')
parser.add_argument("--output_dir", type=str, default='./result/multiview')
cfg = parser.parse_args()
if cfg.num_views == 6:
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
else:
raise NotImplementedError(f"Number of views {cfg.num_views} not supported")
main(cfg)
|