Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,965 Bytes
ef198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import imageio
import numpy as np
import torch
import cv2
import glob
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from tqdm import tqdm
from slrm.utils.train_util import instantiate_from_config
from slrm.utils.camera_util import (
FOV_to_intrinsics,
get_circular_camera_poses,
)
from slrm.utils.mesh_util import save_obj, save_glb
from slrm.utils.infer_util import images_to_video
from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
"""
Get the rendering camera parameters.
"""
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def images_to_video(images, output_dir, fps=30):
# images: (N, C, H, W)
os.makedirs(os.path.dirname(output_dir), exist_ok=True)
frames = []
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
assert frame.min() >= 0 and frame.max() <= 255, \
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
frames.append(frame)
imageio.mimwrite(output_dir, np.stack(frames), fps=fps, codec='h264')
###############################################################################
# Configuration.
###############################################################################
seed_everything(0)
config_path = 'configs/mesh-slrm-infer.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True if config_name.startswith('mesh') else False
device = torch.device('cuda')
# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
state_dict = torch.load(infer_config.model_path, map_location='cpu')
model.load_state_dict(state_dict, strict=False)
model = model.to(device)
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0, is_ortho=model.is_ortho)
model = model.eval()
print('Loading Finished!')
def make_mesh(mesh_fpath, planes, level=None):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
# get mesh
mesh_out = model.extract_mesh(
planes,
use_texture_map=False,
levels=torch.tensor([level]).to(device),
**infer_config,
)
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
save_obj(vertices, faces, vertex_colors, mesh_fpath)
return mesh_fpath, mesh_glb_fpath
def make3d(images, name, output_dir):
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)
render_cameras = get_render_cameras(
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = os.path.join(output_dir, f"{name}.obj")
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras.float())
# get video
chunk_size = 20 if IS_FLEXICUBES else 1
render_size = 512
frames = [ [] for _ in range(4) ]
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if IS_FLEXICUBES:
frame = model.forward_geometry_separate(
planes,
render_cameras[:, i:i+chunk_size],
render_size=render_size,
levels=torch.tensor([0]).to(device),
)['imgs']
for j in range(4):
frames[j].append(frame[j])
else:
frame = model.synthesizer(
planes,
cameras=render_cameras[:, i:i+chunk_size],
render_size=render_size,
)['images_rgb']
frames.append(frame)
for j in range(4):
frames[j] = torch.cat(frames[j], dim=1)
video_fpath_j = video_fpath.replace('.mp4', f'_{j}.mp4')
images_to_video(
frames[j][0],
video_fpath_j,
fps=30,
)
_, mesh_glb_fpath = make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])
return video_fpath, mesh_fpath, mesh_glb_fpath
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', type=str, default="result/multiview")
parser.add_argument('--output_dir', type=str, default="result/slrm")
args = parser.parse_args()
paths = glob.glob(args.input_dir + '/*')
os.makedirs(args.output_dir, exist_ok=True)
def load_rgb(path):
img = plt.imread(path)
img = Image.fromarray(np.uint8(img * 255.))
return img
for path in tqdm(paths):
name = path.split('/')[-1]
index_targets = [
'level0/color_0.png',
'level0/color_1.png',
'level0/color_2.png',
'level0/color_3.png',
'level0/color_4.png',
'level0/color_5.png',
]
imgs = []
for index_target in index_targets:
img = load_rgb(os.path.join(path, index_target))
imgs.append(img)
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024)
video_fpath, mesh_fpath, mesh_glb_fpath = make3d(imgs, name, args.output_dir)
|