File size: 6,965 Bytes
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import imageio
import numpy as np
import torch
import cv2
import glob
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from tqdm import tqdm

from slrm.utils.train_util import instantiate_from_config
from slrm.utils.camera_util import (
    FOV_to_intrinsics, 
    get_circular_camera_poses,
)
from slrm.utils.mesh_util import save_obj, save_glb
from slrm.utils.infer_util import images_to_video

from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
    """
    Get the rendering camera parameters.
    """
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras


def images_to_video(images, output_dir, fps=30):
    # images: (N, C, H, W)
    os.makedirs(os.path.dirname(output_dir), exist_ok=True)
    frames = []
    for i in range(images.shape[0]):
        frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
        assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
            f"Frame shape mismatch: {frame.shape} vs {images.shape}"
        assert frame.min() >= 0 and frame.max() <= 255, \
            f"Frame value out of range: {frame.min()} ~ {frame.max()}"
        frames.append(frame)
    imageio.mimwrite(output_dir, np.stack(frames), fps=fps, codec='h264')


###############################################################################
# Configuration.
###############################################################################

seed_everything(0)

config_path = 'configs/mesh-slrm-infer.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = True if config_name.startswith('mesh') else False

device = torch.device('cuda')

# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
state_dict = torch.load(infer_config.model_path, map_location='cpu')
model.load_state_dict(state_dict, strict=False)

model = model.to(device)
if IS_FLEXICUBES:
    model.init_flexicubes_geometry(device, fovy=30.0, is_ortho=model.is_ortho)
model = model.eval()

print('Loading Finished!')

def make_mesh(mesh_fpath, planes, level=None):

    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
        
    with torch.no_grad():
        # get mesh
        mesh_out = model.extract_mesh(
            planes,
            use_texture_map=False,
            levels=torch.tensor([level]).to(device),
            **infer_config,
        )

        vertices, faces, vertex_colors = mesh_out
        vertices = vertices[:, [1, 2, 0]]
        
        save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, mesh_fpath)

    return mesh_fpath, mesh_glb_fpath


def make3d(images, name, output_dir):
    input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)

    render_cameras = get_render_cameras(
        batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)

    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)

    mesh_fpath = os.path.join(output_dir, f"{name}.obj")

    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")

    with torch.no_grad():
        # get triplane
        planes = model.forward_planes(images, input_cameras.float())

        # get video
        chunk_size = 20 if IS_FLEXICUBES else 1
        render_size = 512
        
        frames = [ [] for _ in range(4) ]
        for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
            if IS_FLEXICUBES:
                frame = model.forward_geometry_separate(
                    planes,
                    render_cameras[:, i:i+chunk_size],
                    render_size=render_size,
                    levels=torch.tensor([0]).to(device),
                )['imgs']
                for j in range(4):
                    frames[j].append(frame[j])
            else:
                frame = model.synthesizer(
                    planes,
                    cameras=render_cameras[:, i:i+chunk_size],
                    render_size=render_size,
                )['images_rgb']
                frames.append(frame)

        for j in range(4):
            frames[j] = torch.cat(frames[j], dim=1)
            video_fpath_j = video_fpath.replace('.mp4', f'_{j}.mp4')
            images_to_video(
                frames[j][0],
                video_fpath_j,
                fps=30,
            )

            _, mesh_glb_fpath = make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])

    return video_fpath, mesh_fpath, mesh_glb_fpath


if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--input_dir', type=str, default="result/multiview")
    parser.add_argument('--output_dir', type=str, default="result/slrm")
    args = parser.parse_args()

    paths = glob.glob(args.input_dir + '/*')
    os.makedirs(args.output_dir, exist_ok=True)

    def load_rgb(path):
        img = plt.imread(path)
        img = Image.fromarray(np.uint8(img * 255.))
        return img
    
    for path in tqdm(paths):
        name = path.split('/')[-1]
        index_targets = [
            'level0/color_0.png',
            'level0/color_1.png',
            'level0/color_2.png',
            'level0/color_3.png',
            'level0/color_4.png',
            'level0/color_5.png',
        ] 
        imgs = []
        for index_target in index_targets:
            img = load_rgb(os.path.join(path, index_target))
            imgs.append(img)

        imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
        imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float()   # (6, 3, 1024, 1024)

        video_fpath, mesh_fpath, mesh_glb_fpath = make3d(imgs, name, args.output_dir)