File size: 8,414 Bytes
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from PIL import Image
import glob

import io
import argparse
import inspect
import os
import random
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np

import torch

from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms

from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline
from einops import rearrange
from torchvision.utils import save_image
import json
import cv2

import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from rm_anime_bg.cli import get_mask, SCALE

check_min_version("0.24.0")
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


class BkgRemover:
    def __init__(self, force_cpu: Optional[bool] = True):
        session_infer_path = hf_hub_download(
            repo_id="skytnt/anime-seg", filename="isnetis.onnx",
        )
        providers: list[str] = ["CPUExecutionProvider"]
        if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
            providers = ["CUDAExecutionProvider"]

        self.session_infer = rt.InferenceSession(
            session_infer_path, providers=providers,
        )

    def remove_background(
        self,
        img: np.ndarray,
        alpha_min: float,
        alpha_max: float,
    ) -> list:
        img = np.array(img)
        mask = get_mask(self.session_infer, img)
        mask[mask < alpha_min] = 0.0
        mask[mask > alpha_max] = 1.0
        img_after = (mask * img).astype(np.uint8)
        mask = (mask * SCALE).astype(np.uint8)
        img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
        return Image.fromarray(img_after)


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def process_image(image, totensor, width, height):
    assert image.mode == "RGBA"

    # Find non-transparent pixels
    non_transparent = np.nonzero(np.array(image)[..., 3])
    min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
    min_y, max_y = non_transparent[0].min(), non_transparent[0].max()    
    image = image.crop((min_x, min_y, max_x, max_y))

    # paste to center
    max_dim = max(image.width, image.height)
    max_height = int(max_dim * 1.2)
    max_width = int(max_dim / (height/width) * 1.2)
    new_image = Image.new("RGBA", (max_width, max_height))
    left = (max_width - image.width) // 2
    top = (max_height - image.height) // 2
    new_image.paste(image, (left, top))

    image = new_image.resize((width, height), resample=Image.BICUBIC)
    image = np.array(image)
    image = image.astype(np.float32) / 255.
    assert image.shape[-1] == 4  # RGBA
    alpha = image[..., 3:4]
    bg_color = np.array([1., 1., 1.], dtype=np.float32)
    image = image[..., :3] * alpha + bg_color * (1 - alpha)
    return totensor(image)


@torch.no_grad()
def inference(validation_pipeline, bkg_remover, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer,
              text_encoder, pretrained_model_path, generator, validation, val_width, val_height, unet_condition_type,
              use_noise=True, noise_d=256, crop=False, seed=100, timestep=20):
    set_seed(seed)

    totensor = transforms.ToTensor()

    prompts = "high quality, best quality"
    prompt_ids = tokenizer(
        prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
        return_tensors="pt"
    ).input_ids[0]

    # (B*Nv, 3, H, W)
    B = 1
    if input_image.mode != "RGBA":
        # remove background
        input_image = bkg_remover.remove_background(input_image, 0.1, 0.9)
    imgs_in = process_image(input_image, totensor, val_width, val_height)
    imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")

    with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype):
        imgs_in = imgs_in.to(device=device)
        # B*Nv images
        out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator, 
                                  num_inference_steps=timestep, prompt_ids=prompt_ids, 
                                  height=val_height, width=val_width, unet_condition_type=unet_condition_type, 
                                  use_noise=use_noise, **validation,)
        out = rearrange(out, "B C f H W -> (B f) C H W", f=1)

    img_buf = io.BytesIO()
    save_image(out[0], img_buf, format='PNG')
    img_buf.seek(0)
    img = Image.open(img_buf)

    torch.cuda.empty_cache()
    return img


@torch.no_grad()
def main(
    input_dir: str,
    output_dir: str,
    pretrained_model_path: str,
    validation: Dict,
    local_crossattn: bool = True,
    unet_from_pretrained_kwargs=None,
    unet_condition_type=None,
    use_noise=True,
    noise_d=256,
    seed: int = 42,
    timestep: int = 40,
    width_input: int = 640,
    height_input: int = 1024,
):
    *_, config = inspect.getargvalues(inspect.currentframe())

    tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
    feature_extractor = CLIPImageProcessor()
    vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
    unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
    ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="ref_unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)

    text_encoder.to(device, dtype=weight_dtype)
    image_encoder.to(device, dtype=weight_dtype)
    vae.to(device, dtype=weight_dtype)
    ref_unet.to(device, dtype=weight_dtype)
    unet.to(device, dtype=weight_dtype)

    vae.requires_grad_(False)
    unet.requires_grad_(False)
    ref_unet.requires_grad_(False)

    # set pipeline
    noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler-zerosnr")
    validation_pipeline = CanonicalizationPipeline(
        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder,
        scheduler=noise_scheduler
    )
    validation_pipeline.set_progress_bar_config(disable=True)

    bkg_remover = BkgRemover()

    def canonicalize(image, width, height, seed, timestep):
        generator = torch.Generator(device=device).manual_seed(seed)
        return inference(
            validation_pipeline, bkg_remover, image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder,
            pretrained_model_path, generator, validation, width, height, unet_condition_type,
            use_noise=use_noise, noise_d=noise_d, crop=True, seed=seed, timestep=timestep
        )

    img_paths = sorted(glob.glob(os.path.join(input_dir, "*.png")))
    os.makedirs(output_dir, exist_ok=True)

    for path in tqdm(img_paths):
        img_input = Image.open(path)
        if np.array(img_input)[..., 3].min() == 255:
            # convert to RGB
            img_input = img_input.convert("RGB")
        img_output = canonicalize(img_input, width_input, height_input, seed, timestep)
        img_output.save(os.path.join(output_dir, f"{os.path.basename(path).split('.')[0]}.png"))

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/canonicalization-infer.yaml")
    parser.add_argument("--input_dir", type=str, default="./input_cases")
    parser.add_argument("--output_dir", type=str, default="./result/apose")
    parser.add_argument("--seed", type=int, default=42)
    args = parser.parse_args()

    main(**OmegaConf.load(args.config), seed=args.seed, input_dir=args.input_dir, output_dir=args.output_dir)