Spaces:
Running
on
L40S
Running
on
L40S
File size: 8,414 Bytes
ef198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
from PIL import Image
import glob
import io
import argparse
import inspect
import os
import random
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms
from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline
from einops import rearrange
from torchvision.utils import save_image
import json
import cv2
import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from rm_anime_bg.cli import get_mask, SCALE
check_min_version("0.24.0")
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class BkgRemover:
def __init__(self, force_cpu: Optional[bool] = True):
session_infer_path = hf_hub_download(
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
)
providers: list[str] = ["CPUExecutionProvider"]
if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
providers = ["CUDAExecutionProvider"]
self.session_infer = rt.InferenceSession(
session_infer_path, providers=providers,
)
def remove_background(
self,
img: np.ndarray,
alpha_min: float,
alpha_max: float,
) -> list:
img = np.array(img)
mask = get_mask(self.session_infer, img)
mask[mask < alpha_min] = 0.0
mask[mask > alpha_max] = 1.0
img_after = (mask * img).astype(np.uint8)
mask = (mask * SCALE).astype(np.uint8)
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
return Image.fromarray(img_after)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def process_image(image, totensor, width, height):
assert image.mode == "RGBA"
# Find non-transparent pixels
non_transparent = np.nonzero(np.array(image)[..., 3])
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
image = image.crop((min_x, min_y, max_x, max_y))
# paste to center
max_dim = max(image.width, image.height)
max_height = int(max_dim * 1.2)
max_width = int(max_dim / (height/width) * 1.2)
new_image = Image.new("RGBA", (max_width, max_height))
left = (max_width - image.width) // 2
top = (max_height - image.height) // 2
new_image.paste(image, (left, top))
image = new_image.resize((width, height), resample=Image.BICUBIC)
image = np.array(image)
image = image.astype(np.float32) / 255.
assert image.shape[-1] == 4 # RGBA
alpha = image[..., 3:4]
bg_color = np.array([1., 1., 1.], dtype=np.float32)
image = image[..., :3] * alpha + bg_color * (1 - alpha)
return totensor(image)
@torch.no_grad()
def inference(validation_pipeline, bkg_remover, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer,
text_encoder, pretrained_model_path, generator, validation, val_width, val_height, unet_condition_type,
use_noise=True, noise_d=256, crop=False, seed=100, timestep=20):
set_seed(seed)
totensor = transforms.ToTensor()
prompts = "high quality, best quality"
prompt_ids = tokenizer(
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
return_tensors="pt"
).input_ids[0]
# (B*Nv, 3, H, W)
B = 1
if input_image.mode != "RGBA":
# remove background
input_image = bkg_remover.remove_background(input_image, 0.1, 0.9)
imgs_in = process_image(input_image, totensor, val_width, val_height)
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype):
imgs_in = imgs_in.to(device=device)
# B*Nv images
out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator,
num_inference_steps=timestep, prompt_ids=prompt_ids,
height=val_height, width=val_width, unet_condition_type=unet_condition_type,
use_noise=use_noise, **validation,)
out = rearrange(out, "B C f H W -> (B f) C H W", f=1)
img_buf = io.BytesIO()
save_image(out[0], img_buf, format='PNG')
img_buf.seek(0)
img = Image.open(img_buf)
torch.cuda.empty_cache()
return img
@torch.no_grad()
def main(
input_dir: str,
output_dir: str,
pretrained_model_path: str,
validation: Dict,
local_crossattn: bool = True,
unet_from_pretrained_kwargs=None,
unet_condition_type=None,
use_noise=True,
noise_d=256,
seed: int = 42,
timestep: int = 40,
width_input: int = 640,
height_input: int = 1024,
):
*_, config = inspect.getargvalues(inspect.currentframe())
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
feature_extractor = CLIPImageProcessor()
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="ref_unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
text_encoder.to(device, dtype=weight_dtype)
image_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
ref_unet.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
vae.requires_grad_(False)
unet.requires_grad_(False)
ref_unet.requires_grad_(False)
# set pipeline
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler-zerosnr")
validation_pipeline = CanonicalizationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder,
scheduler=noise_scheduler
)
validation_pipeline.set_progress_bar_config(disable=True)
bkg_remover = BkgRemover()
def canonicalize(image, width, height, seed, timestep):
generator = torch.Generator(device=device).manual_seed(seed)
return inference(
validation_pipeline, bkg_remover, image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder,
pretrained_model_path, generator, validation, width, height, unet_condition_type,
use_noise=use_noise, noise_d=noise_d, crop=True, seed=seed, timestep=timestep
)
img_paths = sorted(glob.glob(os.path.join(input_dir, "*.png")))
os.makedirs(output_dir, exist_ok=True)
for path in tqdm(img_paths):
img_input = Image.open(path)
if np.array(img_input)[..., 3].min() == 255:
# convert to RGB
img_input = img_input.convert("RGB")
img_output = canonicalize(img_input, width_input, height_input, seed, timestep)
img_output.save(os.path.join(output_dir, f"{os.path.basename(path).split('.')[0]}.png"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/canonicalization-infer.yaml")
parser.add_argument("--input_dir", type=str, default="./input_cases")
parser.add_argument("--output_dir", type=str, default="./result/apose")
parser.add_argument("--seed", type=int, default=42)
args = parser.parse_args()
main(**OmegaConf.load(args.config), seed=args.seed, input_dir=args.input_dir, output_dir=args.output_dir) |