Spaces:
Running
on
L40S
Running
on
L40S
File size: 36,133 Bytes
911a293 ef198e0 591b879 ef198e0 216a665 ef198e0 216a665 ef198e0 e6bf151 8629ffb e6bf151 8629ffb e6bf151 3f0d467 ef198e0 911a293 d2d74f0 ef198e0 8d53de2 ef198e0 8d53de2 ef198e0 911a293 ef198e0 8d53de2 3019303 ef198e0 756ba34 3019303 ef198e0 8d53de2 ef198e0 0aa1fe9 ef198e0 79c1f1a ef198e0 0aa1fe9 ef198e0 79c1f1a ef198e0 79c1f1a ef198e0 911a293 508502c 9516700 508502c ef198e0 508502c ef198e0 79c1f1a ef198e0 af77592 ef198e0 def0065 22e6264 ef198e0 def0065 ef198e0 f6b8a5d ef198e0 756ba34 ef198e0 756ba34 af77592 ef198e0 911a293 216a665 ef198e0 216a665 ef198e0 13973ba 756ba34 ef198e0 65b1e2e 756ba34 be12b94 ef198e0 756ba34 216a665 ef198e0 756ba34 fdc86f3 13973ba be12b94 13973ba ef198e0 756ba34 ef198e0 756ba34 216a665 756ba34 13973ba 756ba34 216a665 756ba34 216a665 756ba34 216a665 756ba34 13973ba 756ba34 76fcd25 756ba34 216a665 ef198e0 756ba34 ef198e0 216a665 756ba34 216a665 ef198e0 216a665 ef198e0 756ba34 216a665 ef198e0 756ba34 ef198e0 756ba34 216a665 756ba34 216a665 756ba34 216a665 756ba34 216a665 756ba34 216a665 756ba34 216a665 756ba34 216a665 756ba34 216a665 ef198e0 756ba34 ef198e0 e431330 bf1c514 e431330 021ce54 fa74a99 bf1c514 e431330 bdf35dc e431330 402acb5 e431330 508502c af77592 ef198e0 def0065 ef198e0 def0065 ef198e0 c17b74f def0065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
import spaces
from PIL import Image
import io
import argparse
import os
import sys
import random
import tempfile
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np
import torch
from pygltflib import GLTF2, Material, PbrMetallicRoughness
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms
from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline
from einops import rearrange
from torchvision.utils import save_image
import json
import cv2
import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from huggingface_hub import list_repo_files
from rm_anime_bg.cli import get_mask, SCALE
import argparse
import os
import cv2
import numpy as np
from typing import Dict, Optional, List
from omegaconf import OmegaConf, DictConfig
from PIL import Image
from pathlib import Path
from dataclasses import dataclass
from typing import Dict
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.utils import make_grid, save_image
from accelerate.utils import set_seed
from tqdm.auto import tqdm
from einops import rearrange, repeat
from multiview.pipeline_multiclass import StableUnCLIPImg2ImgPipeline
import os
import imageio
import numpy as np
import torch
import cv2
import glob
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from tqdm import tqdm
from slrm.utils.train_util import instantiate_from_config
from slrm.utils.camera_util import (
FOV_to_intrinsics,
get_circular_camera_poses,
)
from slrm.utils.mesh_util import save_obj, save_glb, save_obj_with_mtl
from slrm.utils.infer_util import images_to_video
import cv2
import numpy as np
import os
import trimesh
import argparse
import torch
import scipy
from PIL import Image
from refine.mesh_refine import geo_refine
from refine.func import make_star_cameras_orthographic
from refine.render import NormalsRenderer, calc_vertex_normals
import pytorch3d
from pytorch3d.structures import Meshes
from sklearn.neighbors import KDTree
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
check_min_version("0.24.0")
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
#### TEST ####
import nvdiffrast.torch as dr
import torch
from typing import Tuple
@spaces.GPU
def _warmup(device=None):
glctx = dr.RasterizeCudaContext(device=None)
device = 'cuda' if device is None else device
#windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
def tensor(*args, **kwargs):
return torch.tensor(*args, device=device, **kwargs)
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
tri = tensor([[0, 1, 2]], dtype=torch.int32)
dr.rasterize(glctx, pos, tri, resolution=[256, 256])
_warmup(device)
#### TEST END ####
repo_id = "hyz317/StdGEN"
all_files = list_repo_files(repo_id, revision="main")
for file in all_files:
if os.path.exists(file):
continue
hf_hub_download(repo_id, file, local_dir="./ckpt")
@spaces.GPU
def set_seed2(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
session_infer_path = hf_hub_download(
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
)
providers: list[str] = ["CPUExecutionProvider"]
if "CUDAExecutionProvider" in rt.get_available_providers():
providers = ["CUDAExecutionProvider"]
bkg_remover_session_infer = rt.InferenceSession(
session_infer_path, providers=providers,
)
@spaces.GPU
def remove_background(
img: np.ndarray,
alpha_min: float,
alpha_max: float,
) -> list:
img = np.array(img)
mask = get_mask(bkg_remover_session_infer, img)
mask[mask < alpha_min] = 0.0
mask[mask > alpha_max] = 1.0
img_after = (mask * img).astype(np.uint8)
mask = (mask * SCALE).astype(np.uint8)
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
return Image.fromarray(img_after)
def process_image(image, totensor, width, height):
assert image.mode == "RGBA"
# Find non-transparent pixels
non_transparent = np.nonzero(np.array(image)[..., 3])
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
image = image.crop((min_x, min_y, max_x, max_y))
# paste to center
max_dim = max(image.width, image.height)
max_height = int(max_dim * 1.2)
max_width = int(max_dim / (height/width) * 1.2)
new_image = Image.new("RGBA", (max_width, max_height))
left = (max_width - image.width) // 2
top = (max_height - image.height) // 2
new_image.paste(image, (left, top))
image = new_image.resize((width, height), resample=Image.BICUBIC)
image = np.array(image)
image = image.astype(np.float32) / 255.
assert image.shape[-1] == 4 # RGBA
alpha = image[..., 3:4]
bg_color = np.array([1., 1., 1.], dtype=np.float32)
image = image[..., :3] * alpha + bg_color * (1 - alpha)
return totensor(image)
@spaces.GPU
@torch.no_grad()
def inference(validation_pipeline, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer,
text_encoder, pretrained_model_path, validation, val_width, val_height, unet_condition_type,
use_noise=True, noise_d=256, crop=False, seed=100, timestep=20):
set_seed2(seed)
generator = torch.Generator(device=device).manual_seed(seed)
totensor = transforms.ToTensor()
prompts = "high quality, best quality"
prompt_ids = tokenizer(
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
return_tensors="pt"
).input_ids[0]
# (B*Nv, 3, H, W)
B = 1
if input_image.mode != "RGBA":
# remove background
input_image = remove_background(input_image, 0.1, 0.9)
imgs_in = process_image(input_image, totensor, val_width, val_height)
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype):
imgs_in = imgs_in.to(device=device)
# B*Nv images
out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator,
num_inference_steps=timestep, prompt_ids=prompt_ids,
height=val_height, width=val_width, unet_condition_type=unet_condition_type,
use_noise=use_noise, **validation,)
out = rearrange(out, "B C f H W -> (B f) C H W", f=1)
print("OUT!!!!!!")
img_buf = io.BytesIO()
save_image(out[0], img_buf, format='PNG')
img_buf.seek(0)
img = Image.open(img_buf)
print("OUT2!!!!!!")
torch.cuda.empty_cache()
return img
######### Multi View Part #############
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def tensor_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
pretrained_unet_path:Optional[str]
revision: Optional[str]
validation_dataset: Dict
save_dir: str
seed: Optional[int]
validation_batch_size: int
dataloader_num_workers: int
save_mode: str
local_rank: int
pipe_kwargs: Dict
pipe_validation_kwargs: Dict
unet_from_pretrained_kwargs: Dict
validation_grid_nrow: int
camera_embedding_lr_mult: float
num_views: int
camera_embedding_type: str
pred_type: str
regress_elevation: bool
enable_xformers_memory_efficient_attention: bool
cond_on_normals: bool
cond_on_colors: bool
regress_elevation: bool
regress_focal_length: bool
def convert_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
# 定义一个函数,用于保存图像
def save_image2(tensor):
# 将tensor转换为numpy数组
ndarr = convert_to_numpy(tensor)
# 调用save_image_numpy函数,保存图像
return save_image_numpy(ndarr)
def save_image_numpy(ndarr):
im = Image.fromarray(ndarr)
# pad to square
if im.size[0] != im.size[1]:
size = max(im.size)
new_im = Image.new("RGB", (size, size))
# set to white
new_im.paste((255, 255, 255), (0, 0, size, size))
new_im.paste(im, ((size - im.size[0]) // 2, (size - im.size[1]) // 2))
im = new_im
# resize to 1024x1024
im = im.resize((1024, 1024), Image.LANCZOS)
return im
@spaces.GPU
def run_multiview_infer(data, pipeline, cfg: TestConfig, num_levels=3, seed=None):
pipeline.unet.enable_xformers_memory_efficient_attention()
if seed is None:
generator = None
else:
generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed)
images_cond = []
results = {}
torch.cuda.empty_cache()
images_cond.append(data['image_cond_rgb'][:, 0].cuda())
imgs_in = torch.cat([data['image_cond_rgb']]*2, dim=0).cuda()
num_views = imgs_in.shape[1]
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
target_h, target_w = imgs_in.shape[-2], imgs_in.shape[-1]
normal_prompt_embeddings, clr_prompt_embeddings = data['normal_prompt_embeddings'].cuda(), data['color_prompt_embeddings'].cuda()
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
# B*Nv images
unet_out = pipeline(
imgs_in, None, prompt_embeds=prompt_embeddings,
generator=generator, guidance_scale=3.0, output_type='pt', num_images_per_prompt=1,
height=cfg.height, width=cfg.width,
num_inference_steps=40, eta=1.0,
num_levels=num_levels,
)
for level in range(num_levels):
out = unet_out[level].images
bsz = out.shape[0] // 2
normals_pred = out[:bsz]
images_pred = out[bsz:]
if num_levels == 2:
results[level+1] = {'normals': [], 'images': []}
else:
results[level] = {'normals': [], 'images': []}
for i in range(bsz//num_views):
img_in_ = images_cond[-1][i].to(out.device)
for j in range(num_views):
view = VIEWS[j]
idx = i*num_views + j
normal = normals_pred[idx]
color = images_pred[idx]
## save color and normal---------------------
new_normal = save_image2(normal)
new_color = save_image2(color)
if num_levels == 2:
results[level+1]['normals'].append(new_normal)
results[level+1]['images'].append(new_color)
else:
results[level]['normals'].append(new_normal)
results[level]['images'].append(new_color)
torch.cuda.empty_cache()
return results
class InferAPI:
def __init__(self,
canonical_configs,
multiview_configs,
slrm_configs,
refine_configs):
self.canonical_configs = canonical_configs
self.multiview_configs = multiview_configs
self.slrm_configs = slrm_configs
self.refine_configs = refine_configs
self.results = {}
# self.canonical_infer = InferCanonicalAPI(self.canonical_configs)
# self.multiview_infer = InferMultiviewAPI(self.multiview_configs)
# self.slrm_infer = InferSlrmAPI(self.slrm_configs)
# self.refine_infer = InferRefineAPI(self.refine_configs)
def genStage1(self, img, seed):
return infer_canonicalize_gen(img, seed)
def genStage2(self, img, seed, num_levels):
return infer_multiview_gen(img, seed, num_levels)
def genStage3(self, img):
return infer_slrm_gen(img)
def genStage4(self, meshes, imgs):
return infer_refine(meshes, imgs)
def add_results(self, results):
for k in results:
self.results[k] = results[k]
############## Refine ##############
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
np_color = np.clip(np_color, 0, 1)
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
def calc_horizontal_offset(target_img, source_img):
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
def calc_horizontal_offset2(target_mask, source_img):
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
@spaces.GPU
def get_distract_mask(color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20):
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres
if normal_0 is not None and normal_1 is not None:
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres
labeled_array, num_features = scipy.ndimage.label(distract_area)
results = []
random_sampled_points = []
for i in range(num_features + 1):
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000:
results.append((i, np.sum(labeled_array == i)))
# random sample a point in the area
points = np.argwhere(labeled_array == i)
random_sampled_points.append(points[np.random.randint(0, points.shape[0])])
results = sorted(results, key=lambda x: x[1], reverse=True) # [1:]
distract_mask = np.zeros_like(distract_area)
distract_bbox = np.zeros_like(distract_area)
for i, _ in results:
distract_mask |= labeled_array == i
bbox = np.argwhere(labeled_array == i)
min_x, min_y = bbox.min(axis=0)
max_x, max_y = bbox.max(axis=0)
distract_bbox[min_x:max_x, min_y:max_y] = 1
return distract_mask, distract_bbox
# infer_refine_sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
# infer_refine_generator = SamAutomaticMaskGenerator(
# model=infer_refine_sam,
# points_per_side=64,
# pred_iou_thresh=0.80,
# stability_score_thresh=0.92,
# crop_n_layers=1,
# crop_n_points_downscale_factor=2,
# min_mask_region_area=100,
# )
infer_refine_outside_ratio = 0.20
@spaces.GPU(duration=70)
def infer_refine(meshes, imgs):
fixed_v, fixed_f, fixed_t = None, None, None
flow_vert, flow_vector = None, None
last_colors, last_normals = None, None
last_front_color, last_front_normal = None, None
distract_mask = None
results = []
mesh_list = []
for name_idx, level in zip([2, 0, 1], [2, 1, 0]):
mesh = trimesh.load(meshes[name_idx])
new_mesh = mesh.split(only_watertight=False)
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ]
mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
mesh_v, mesh_f = mesh.vertices, mesh.faces
if last_colors is None:
# @spaces.GPU()
def get_mask():
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,(1024,1024))
images = renderer.render(
torch.tensor(mesh_v, device='cuda').float(),
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
torch.tensor(mesh_f, device='cuda'),
)
mask = (images[..., 3] < 0.9).cpu().numpy()
return mask
mask = get_mask()
colors, normals = [], []
for i in range(6):
color = np.array(imgs[level]['images'][i])
normal = np.array(imgs[level]['normals'][i])
if last_colors is not None:
offset = calc_horizontal_offset(np.array(last_colors[i]), color)
# print('offset', i, offset)
else:
offset = calc_horizontal_offset2(mask[i], color)
# print('init offset', i, offset)
if offset != 0:
color = np.roll(color, offset, axis=1)
normal = np.roll(normal, offset, axis=1)
color = Image.fromarray(color)
normal = Image.fromarray(normal)
colors.append(color)
normals.append(normal)
if last_front_color is not None and level == 0:
distract_mask, distract_bbox = get_distract_mask(last_front_color, np.array(colors[0]).astype(np.float32) / 255.0)
else:
distract_mask = None
distract_bbox = None
if last_colors is None:
from copy import deepcopy
last_colors = deepcopy(colors)
# my mesh flow weight by nearest vertexs
if fixed_v is not None and fixed_f is not None and level == 1:
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(mesh_v)
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
mesh_v += weighted_vec_anchor.cpu().numpy()
mesh_v = torch.tensor(mesh_v, dtype=torch.float32)
mesh_f = torch.tensor(mesh_f)
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f)
# my mesh flow weight by nearest vertexs
try:
if fixed_v is not None and fixed_f is not None and level != 0:
new_mesh_v = new_mesh.vertices.copy()
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(new_mesh_v)
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; new_mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
new_mesh_v += weighted_vec_anchor.cpu().numpy()
# replace new_mesh verts with new_mesh_v
new_mesh.vertices = new_mesh_v
except Exception as e:
pass
if fixed_v is None:
fixed_v, fixed_f = simp_v, simp_f
else:
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
mesh_list.append(new_mesh)
if level == 2:
new_mesh = trimesh.Trimesh(simp_v.cpu().numpy(), simp_f.cpu().numpy(), process=False)
new_mesh.export(meshes[name_idx].replace('.obj', '_refined.glb'))
results.append(meshes[name_idx].replace('.obj', '_refined.glb'))
gltf = GLTF2().load(meshes[name_idx].replace('.obj', '_refined.glb'))
for material in gltf.materials:
if material.pbrMetallicRoughness:
material.pbrMetallicRoughness.baseColorFactor = [1.0, 1.0, 1.0, 100.0]
material.pbrMetallicRoughness.metallicFactor = 0.0
material.pbrMetallicRoughness.roughnessFactor = 1.0
gltf.save(meshes[name_idx].replace('.obj', '_refined.glb'))
# save whole mesh
scene = trimesh.Scene(mesh_list)
scene.export(meshes[name_idx].replace('.obj', '_refined_whole.glb'))
results.append(meshes[name_idx].replace('.obj', '_refined_whole.glb'))
gltf = GLTF2().load(meshes[name_idx].replace('.obj', '_refined_whole.glb'))
for material in gltf.materials:
if material.pbrMetallicRoughness:
material.pbrMetallicRoughness.baseColorFactor = [1.0, 1.0, 1.0, 100.0]
material.pbrMetallicRoughness.metallicFactor = 0.0
material.pbrMetallicRoughness.roughnessFactor = 1.0
gltf.save(meshes[name_idx].replace('.obj', '_refined_whole.glb'))
return results
config_slrm = {
'config_path': './configs/mesh-slrm-infer.yaml'
}
infer_slrm_config_path = config_slrm['config_path']
infer_slrm_config = OmegaConf.load(infer_slrm_config_path)
infer_slrm_config_name = os.path.basename(infer_slrm_config_path).replace('.yaml', '')
infer_slrm_model_config = infer_slrm_config.model_config
infer_slrm_infer_config = infer_slrm_config.infer_config
infer_slrm_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
infer_slrm_model = instantiate_from_config(infer_slrm_model_config)
state_dict = torch.load(infer_slrm_infer_config.model_path, map_location='cpu')
infer_slrm_model.load_state_dict(state_dict, strict=False)
infer_slrm_model = infer_slrm_model.to(infer_slrm_device)
infer_slrm_model.init_flexicubes_geometry(infer_slrm_device, fovy=30.0, is_ortho=infer_slrm_model.is_ortho)
infer_slrm_model = infer_slrm_model.eval()
@spaces.GPU
def infer_slrm_gen(imgs):
imgs = [ cv2.imread(img[0])[:, :, ::-1] for img in imgs ]
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024)
mesh_glb_fpaths = infer_slrm_make3d(imgs)
return mesh_glb_fpaths[1:4] + mesh_glb_fpaths[0:1]
@spaces.GPU
def infer_slrm_make3d(images):
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
print(mesh_fpath)
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
with torch.no_grad():
# get triplane
planes = infer_slrm_model.forward_planes(images, input_cameras.float())
# get mesh
mesh_glb_fpaths = []
for j in range(4):
mesh_glb_fpath = infer_slrm_make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])
mesh_glb_fpaths.append(mesh_glb_fpath)
return mesh_glb_fpaths
@spaces.GPU
def infer_slrm_make_mesh(mesh_fpath, planes, level=None, use_texture_map=False):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
with torch.no_grad():
# get mesh
mesh_out = infer_slrm_model.extract_mesh(
planes,
use_texture_map=use_texture_map,
levels=torch.tensor([level]).to(device),
**infer_slrm_infer_config,
)
if use_texture_map:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
vertices = vertices[:, [1, 2, 0]]
tex_map = tex_map.permute(1, 2, 0).data.cpu().numpy()
if level == 2:
# fill all vertex_colors with 127
tex_map = np.ones_like(tex_map) * 127
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map,
mesh_fpath
)
else:
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
if level == 2:
# fill all vertex_colors with 127
vertex_colors = np.ones_like(vertex_colors) * 127
save_obj(vertices, faces, vertex_colors, mesh_fpath)
return mesh_fpath
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--num_views", type=int, default=6)
parser.add_argument("--num_levels", type=int, default=3)
parser.add_argument("--pretrained_path", type=str, default='./ckpt/StdGEN-multiview-1024')
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--width", type=int, default=576)
infer_multiview_cfg = parser.parse_args()
infer_multiview_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
infer_multiview_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
infer_multiview_cfg.pretrained_path,
torch_dtype=torch.float16,)
if torch.cuda.is_available():
infer_multiview_pipeline.to(infer_multiview_device)
print(f"Era3D Using device!!!!!!!!!!!!: {infer_multiview_device}", file=sys.stderr)
infer_multiview_results = {}
infer_multiview_image_transforms = [transforms.Resize(int(max(infer_multiview_cfg.height, infer_multiview_cfg.width))),
transforms.CenterCrop((infer_multiview_cfg.height, infer_multiview_cfg.width)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2. - 1),
]
infer_multiview_image_transforms = transforms.Compose(infer_multiview_image_transforms)
prompt_embeds_path = './multiview/fixed_prompt_embeds_6view'
infer_multiview_normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
infer_multiview_color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
infer_multiview_total_views = infer_multiview_cfg.num_views
@spaces.GPU
def process_im(im):
im = infer_multiview_image_transforms(im)
return im
@spaces.GPU(duration=150)
def infer_multiview_gen(img, seed, num_levels):
set_seed(seed)
data = {}
cond_im_rgb = process_im(img)
cond_im_rgb = torch.stack([cond_im_rgb] * infer_multiview_total_views, dim=0)
data["image_cond_rgb"] = cond_im_rgb[None, ...]
data["normal_prompt_embeddings"] = infer_multiview_normal_text_embeds[None, ...]
data["color_prompt_embeddings"] = infer_multiview_color_text_embeds[None, ...]
results = run_multiview_infer(data, infer_multiview_pipeline, infer_multiview_cfg, num_levels=num_levels, seed=seed)
return results
infer_canonicalize_config = {
'config_path': './configs/canonicalization-infer.yaml',
}
infer_canonicalize_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print device stderr
import sys
print(f"Using device!!!!!!!!!!!!: {infer_canonicalize_device}", file=sys.stderr)
infer_canonicalize_config_path = infer_canonicalize_config['config_path']
infer_canonicalize_loaded_config = OmegaConf.load(infer_canonicalize_config_path)
def infer_canonicalize_setup(
validation: Dict,
pretrained_model_path: str,
local_crossattn: bool = True,
unet_from_pretrained_kwargs=None,
unet_condition_type=None,
use_noise=True,
noise_d=256,
timestep: int = 40,
width_input: int = 640,
height_input: int = 1024,
):
infer_canonicalize_width_input = width_input
infer_canonicalize_height_input = height_input
infer_canonicalize_timestep = timestep
infer_canonicalize_use_noise = use_noise
infer_canonicalize_noise_d = noise_d
infer_canonicalize_validation = validation
infer_canonicalize_unet_condition_type = unet_condition_type
infer_canonicalize_pretrained_model_path = pretrained_model_path
infer_canonicalize_local_crossattn = local_crossattn
infer_canonicalize_unet_from_pretrained_kwargs = unet_from_pretrained_kwargs
return infer_canonicalize_width_input, infer_canonicalize_height_input, infer_canonicalize_timestep, infer_canonicalize_use_noise, infer_canonicalize_noise_d, infer_canonicalize_validation, infer_canonicalize_unet_condition_type, infer_canonicalize_pretrained_model_path, infer_canonicalize_local_crossattn, infer_canonicalize_unet_from_pretrained_kwargs
infer_canonicalize_width_input, infer_canonicalize_height_input, infer_canonicalize_timestep, infer_canonicalize_use_noise, infer_canonicalize_noise_d, infer_canonicalize_validation, infer_canonicalize_unet_condition_type, infer_canonicalize_pretrained_model_path, infer_canonicalize_local_crossattn, infer_canonicalize_unet_from_pretrained_kwargs = infer_canonicalize_setup(**infer_canonicalize_loaded_config)
infer_canonicalize_tokenizer = CLIPTokenizer.from_pretrained(infer_canonicalize_pretrained_model_path, subfolder="tokenizer")
infer_canonicalize_text_encoder = CLIPTextModel.from_pretrained(infer_canonicalize_pretrained_model_path, subfolder="text_encoder")
infer_canonicalize_image_encoder = CLIPVisionModelWithProjection.from_pretrained(infer_canonicalize_pretrained_model_path, subfolder="image_encoder")
infer_canonicalize_feature_extractor = CLIPImageProcessor()
infer_canonicalize_vae = AutoencoderKL.from_pretrained(infer_canonicalize_pretrained_model_path, subfolder="vae")
infer_canonicalize_unet = UNetMV2DConditionModel.from_pretrained_2d(infer_canonicalize_pretrained_model_path, subfolder="unet", local_crossattn=infer_canonicalize_local_crossattn, **infer_canonicalize_unet_from_pretrained_kwargs)
infer_canonicalize_ref_unet = UNetMV2DRefModel.from_pretrained_2d(infer_canonicalize_pretrained_model_path, subfolder="ref_unet", local_crossattn=infer_canonicalize_local_crossattn, **infer_canonicalize_unet_from_pretrained_kwargs)
infer_canonicalize_text_encoder.to(device, dtype=weight_dtype)
infer_canonicalize_image_encoder.to(device, dtype=weight_dtype)
infer_canonicalize_vae.to(device, dtype=weight_dtype)
infer_canonicalize_ref_unet.to(device, dtype=weight_dtype)
infer_canonicalize_unet.to(device, dtype=weight_dtype)
infer_canonicalize_vae.requires_grad_(False)
infer_canonicalize_ref_unet.requires_grad_(False)
infer_canonicalize_unet.requires_grad_(False)
infer_canonicalize_noise_scheduler = DDIMScheduler.from_pretrained(infer_canonicalize_pretrained_model_path, subfolder="scheduler-zerosnr")
infer_canonicalize_validation_pipeline = CanonicalizationPipeline(
vae=infer_canonicalize_vae, text_encoder=infer_canonicalize_text_encoder, tokenizer=infer_canonicalize_tokenizer, unet=infer_canonicalize_unet, ref_unet=infer_canonicalize_ref_unet,feature_extractor=infer_canonicalize_feature_extractor,image_encoder=infer_canonicalize_image_encoder,
scheduler=infer_canonicalize_noise_scheduler
)
infer_canonicalize_validation_pipeline.set_progress_bar_config(disable=True)
@spaces.GPU
def infer_canonicalize_gen(img_input, seed=0):
if np.array(img_input).shape[-1] == 4 and np.array(img_input)[..., 3].min() == 255:
# convert to RGB
img_input = img_input.convert("RGB")
img_output = inference(
infer_canonicalize_validation_pipeline, img_input, infer_canonicalize_vae, infer_canonicalize_feature_extractor, infer_canonicalize_image_encoder, infer_canonicalize_unet, infer_canonicalize_ref_unet, infer_canonicalize_tokenizer, infer_canonicalize_text_encoder,
infer_canonicalize_pretrained_model_path, infer_canonicalize_validation, infer_canonicalize_width_input, infer_canonicalize_height_input, infer_canonicalize_unet_condition_type,
use_noise=infer_canonicalize_use_noise, noise_d=infer_canonicalize_noise_d, crop=True, seed=seed, timestep=infer_canonicalize_timestep
)
max_dim = max(img_output.width, img_output.height)
new_image = Image.new("RGBA", (max_dim, max_dim))
left = (max_dim - img_output.width) // 2
top = (max_dim - img_output.height) // 2
new_image.paste(img_output, (left, top))
return new_image
|