StdGEN / app.py
Tonic's picture
fixes 500 error for some users
906e4ee verified
raw
history blame
9.25 kB
import spaces
import gradio as gr
import glob
import hashlib
from PIL import Image
import os
import shlex
import subprocess
os.makedirs("./ckpt", exist_ok=True)
# download ViT-H SAM model into ./ckpt
subprocess.call(["wget", "-q", "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", "-O", "./ckpt/sam_vit_h_4b8939.pth"])
subprocess.run(
shlex.split(
"pip install pip==24.0"
)
)
subprocess.run(
shlex.split(
"pip install package/nvdiffrast-0.3.1.torch-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
from infer_api import InferAPI
config_canocalize = {
'config_path': './configs/canonicalization-infer.yaml',
}
config_multiview = {}
config_slrm = {
'config_path': './configs/mesh-slrm-infer.yaml'
}
config_refine = {}
EXAMPLE_IMAGES = glob.glob("./input_cases/*")
EXAMPLE_APOSE_IMAGES = glob.glob("./input_cases_apose/*")
infer_api = InferAPI(config_canocalize, config_multiview, config_slrm, config_refine)
_HEADER_ = '''
<h2><b>[CVPR 2025] StdGEN 🤗 Gradio Demo</b></h2>
This is official demo for our CVPR 2025 paper <a href="">StdGEN: Semantic-Decomposed 3D Character Generation from Single Images</a>.
Code: <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2411.05738' target='_blank'>ArXiv</a>.
❗️❗️❗️**Important Notes:** This is only a **PREVIEW** version with **coarse precision geometry and texture** due to limited online resource. We skip some refinement process and perform only color back-projection to clothes and hair. Please refer to GitHub repo for complete version.
1. Refinement stage takes about ~2.5min, and the mesh result may possibly delayed due to the server load, please wait patiently.
2. You can upload any reference image (with or without background), A-pose images are also supported (white bkg required). If the image has an alpha channel (transparency), background segmentation will be automatically performed. Alternatively, you can pre-segment the background using other tools and upload the result directly.
3. Real person images generally work well, but note that normals may appear smoother than expected. You can try to use other monocular normal estimation models.
4. The base human model in the output is uncolored due to potential NSFW concerns. If you need colored results, please refer to the official GitHub repository for instructions.
'''
_CITE_ = r"""
If StdGEN is helpful, please help to ⭐ the <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/hyz317/StdGEN?style=social)](https://github.com/hyz317/StdGEN)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{he2024stdgen,
title={StdGEN: Semantic-Decomposed 3D Character Generation from Single Images},
author={He, Yuze and Zhou, Yanning and Zhao, Wang and Wu, Zhongkai and Xiao, Kaiwen and Yang, Wei and Liu, Yong-Jin and Han, Xiao},
journal={arXiv preprint arXiv:2411.05738},
year={2024}
}
```
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>hyz22@mails.tsinghua.edu.cn</b>.
"""
cache_arbitrary = {}
cache_multiview = [ {}, {}, {} ]
cache_slrm = {}
cache_refine = {}
tmp_path = '/tmp'
# 示例占位函数 - 需替换实际模型
def arbitrary_to_apose(image, seed):
# convert image to PIL.Image
image = Image.fromarray(image)
image_hash = str(hashlib.md5(image.tobytes()).hexdigest()) + '_' + str(seed)
if image_hash not in cache_arbitrary:
apose_img = infer_api.genStage1(image, seed)
apose_img.save(f'{tmp_path}/{image_hash}.png')
cache_arbitrary[image_hash] = f'{tmp_path}/{image_hash}.png'
print(f'cached apose image: {image_hash}')
return apose_img
else:
apose_img = Image.open(cache_arbitrary[image_hash])
print(f'loaded cached apose image: {image_hash}')
return apose_img
def apose_to_multiview(apose_img, seed):
# convert image to PIL.Image
apose_img = Image.fromarray(apose_img)
image_hash = str(hashlib.md5(apose_img.tobytes()).hexdigest()) + '_' + str(seed)
if image_hash not in cache_multiview[0]:
results = infer_api.genStage2(apose_img, seed, num_levels=1)
for idx, img in enumerate(results[0]["images"]):
img.save(f'{tmp_path}/{image_hash}_images_{idx}.png')
for idx, img in enumerate(results[0]["normals"]):
img.save(f'{tmp_path}/{image_hash}_normals_{idx}.png')
cache_multiview[0][image_hash] = {
"images": [f'{tmp_path}/{image_hash}_images_{idx}.png' for idx in range(len(results[0]["images"]))],
"normals": [f'{tmp_path}/{image_hash}_normals_{idx}.png' for idx in range(len(results[0]["normals"]))]
}
print(f'cached multiview images: {image_hash}')
return results[0]["images"], image_hash
else:
print(f'loaded cached multiview images: {image_hash}')
return [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["images"]], image_hash
def multiview_to_mesh(images, image_hash):
if image_hash not in cache_slrm:
mesh_files = infer_api.genStage3(images)
cache_slrm[image_hash] = mesh_files
print(f'cached slrm files: {image_hash}')
else:
mesh_files = cache_slrm[image_hash]
print(f'loaded cached slrm files: {image_hash}')
return *mesh_files, image_hash
def refine_mesh(mesh1, mesh2, mesh3, seed, image_hash):
apose_img = Image.open(cache_multiview[0][image_hash]["images"][0])
if image_hash not in cache_refine:
results = infer_api.genStage2(apose_img, seed, num_levels=2)
results[0] = {}
results[0]["images"] = [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["images"]]
results[0]["normals"] = [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["normals"]]
refined = infer_api.genStage4([mesh1, mesh2, mesh3], results)
cache_refine[image_hash] = refined
print(f'cached refined mesh: {image_hash}')
else:
refined = cache_refine[image_hash]
print(f'loaded cached refined mesh: {image_hash}')
return refined
with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation from Single Images") as demo:
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
gr.Markdown("## 1. Reference Image to A-pose Image")
input_image = gr.Image(label="Input Reference Image", type="numpy", width=384, height=384)
gr.Examples(
examples=EXAMPLE_IMAGES,
inputs=input_image,
label="Click to use sample images",
)
seed_input = gr.Number(
label="Seed",
value=52,
precision=0,
interactive=True
)
pose_btn = gr.Button("Convert")
with gr.Column():
gr.Markdown("## 2. Multi-view Generation")
a_pose_image = gr.Image(label="A-pose Result", type="numpy", width=384, height=384)
gr.Examples(
examples=EXAMPLE_APOSE_IMAGES,
inputs=a_pose_image,
label="Click to use sample A-pose images",
)
seed_input2 = gr.Number(
label="Seed",
value=50,
precision=0,
interactive=True
)
state2 = gr.State(value="")
view_btn = gr.Button("Generate Multi-view Images")
with gr.Column():
gr.Markdown("## 3. Semantic-aware Reconstruction")
multiview_gallery = gr.Gallery(
label="Multi-view results",
columns=2,
interactive=False,
height="None"
)
state3 = gr.State(value="")
mesh_btn = gr.Button("Reconstruct")
with gr.Row():
mesh_cols = [gr.Model3D(label=f"Mesh {i+1}", interactive=False, height=384) for i in range(3)]
full_mesh = gr.Model3D(label="Whole Mesh", height=384)
refine_btn = gr.Button("Refine")
gr.Markdown("## 4. Mesh refinement")
with gr.Row():
refined_meshes = [gr.Model3D(label=f"refined mesh {i+1}", height=384) for i in range(3)]
refined_full_mesh = gr.Model3D(label="refined whole mesh", height=384)
gr.Markdown(_CITE_)
# 交互逻辑
pose_btn.click(
arbitrary_to_apose,
inputs=[input_image, seed_input],
outputs=a_pose_image
)
view_btn.click(
apose_to_multiview,
inputs=[a_pose_image, seed_input2],
outputs=[multiview_gallery, state2]
)
mesh_btn.click(
multiview_to_mesh,
inputs=[multiview_gallery, state2],
outputs=[*mesh_cols, full_mesh, state3]
)
refine_btn.click(
refine_mesh,
inputs=[*mesh_cols, seed_input2, state3],
outputs=[refined_meshes[2], refined_meshes[0], refined_meshes[1], refined_full_mesh]
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)