File size: 9,249 Bytes
27c236e
ef198e0
 
01416ea
ef198e0
9d94048
c4940f9
9d94048
 
424c7ef
 
 
4b57058
424c7ef
 
 
 
 
 
 
 
 
 
e08235d
 
 
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
835933c
 
 
a59b969
835933c
a59b969
f1e6905
13973ba
a59b969
1570031
a59b969
 
 
 
835933c
 
 
cfae272
835933c
 
 
 
 
 
 
 
 
 
 
 
 
ef198e0
 
914c133
 
 
 
 
 
 
ef198e0
 
 
 
01416ea
914c133
 
 
 
 
 
 
 
 
 
ef198e0
 
 
 
01416ea
914c133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b04e0b
 
914c133
 
 
 
 
 
 
 
 
 
 
 
ef198e0
 
 
835933c
ef198e0
 
 
 
 
 
 
 
 
 
 
914c133
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
c794eba
ef198e0
 
 
914c133
ef198e0
 
 
 
 
 
 
 
 
 
914c133
ef198e0
 
 
 
 
 
 
 
 
 
 
 
835933c
 
ef198e0
 
 
 
 
 
 
 
 
 
914c133
ef198e0
 
 
 
914c133
 
ef198e0
 
 
 
4b04e0b
ef198e0
 
 
 
906e4ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import spaces
import gradio as gr
import glob
import hashlib
from PIL import Image
import os
import shlex
import subprocess

os.makedirs("./ckpt", exist_ok=True)
# download ViT-H SAM model into ./ckpt
subprocess.call(["wget", "-q", "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", "-O", "./ckpt/sam_vit_h_4b8939.pth"])

subprocess.run(
    shlex.split(
        "pip install pip==24.0"
    )
)
subprocess.run(
    shlex.split(
        "pip install package/nvdiffrast-0.3.1.torch-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
    )
)

from infer_api import InferAPI

config_canocalize = {
    'config_path': './configs/canonicalization-infer.yaml',
}
config_multiview = {}
config_slrm = {
    'config_path': './configs/mesh-slrm-infer.yaml'
}
config_refine = {}

EXAMPLE_IMAGES = glob.glob("./input_cases/*")
EXAMPLE_APOSE_IMAGES = glob.glob("./input_cases_apose/*")

infer_api = InferAPI(config_canocalize, config_multiview, config_slrm, config_refine)

_HEADER_ = '''
<h2><b>[CVPR 2025] StdGEN 🤗 Gradio Demo</b></h2>
This is official demo for our CVPR 2025 paper <a href="">StdGEN: Semantic-Decomposed 3D Character Generation from Single Images</a>.

Code: <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2411.05738' target='_blank'>ArXiv</a>.

❗️❗️❗️**Important Notes:** This is only a **PREVIEW** version with **coarse precision geometry and texture** due to limited online resource. We skip some refinement process and perform only color back-projection to clothes and hair. Please refer to GitHub repo for complete version.
1. Refinement stage takes about ~2.5min, and the mesh result may possibly delayed due to the server load, please wait patiently.

2. You can upload any reference image (with or without background), A-pose images are also supported (white bkg required). If the image has an alpha channel (transparency), background segmentation will be automatically performed. Alternatively, you can pre-segment the background using other tools and upload the result directly.  

3. Real person images generally work well, but note that normals may appear smoother than expected. You can try to use other monocular normal estimation models.

4. The base human model in the output is uncolored due to potential NSFW concerns. If you need colored results, please refer to the official GitHub repository for instructions.
'''

_CITE_ = r"""
If StdGEN is helpful, please help to ⭐ the <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/hyz317/StdGEN?style=social)](https://github.com/hyz317/StdGEN)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{he2024stdgen,
  title={StdGEN: Semantic-Decomposed 3D Character Generation from Single Images},
  author={He, Yuze and Zhou, Yanning and Zhao, Wang and Wu, Zhongkai and Xiao, Kaiwen and Yang, Wei and Liu, Yong-Jin and Han, Xiao},
  journal={arXiv preprint arXiv:2411.05738},
  year={2024}
}
```
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>hyz22@mails.tsinghua.edu.cn</b>.
"""

cache_arbitrary = {}
cache_multiview = [ {}, {}, {} ]
cache_slrm = {}
cache_refine = {}

tmp_path = '/tmp'

# 示例占位函数 - 需替换实际模型
def arbitrary_to_apose(image, seed):
    # convert image to PIL.Image
    image = Image.fromarray(image)
    image_hash = str(hashlib.md5(image.tobytes()).hexdigest()) + '_' + str(seed)
    if image_hash not in cache_arbitrary:
        apose_img = infer_api.genStage1(image, seed)
        apose_img.save(f'{tmp_path}/{image_hash}.png')
        cache_arbitrary[image_hash] = f'{tmp_path}/{image_hash}.png'
        print(f'cached apose image: {image_hash}')
        return apose_img
    else:
        apose_img = Image.open(cache_arbitrary[image_hash])
        print(f'loaded cached apose image: {image_hash}')
        return apose_img

def apose_to_multiview(apose_img, seed):
    # convert image to PIL.Image
    apose_img = Image.fromarray(apose_img)
    image_hash = str(hashlib.md5(apose_img.tobytes()).hexdigest()) + '_' + str(seed)
    if image_hash not in cache_multiview[0]:
        results = infer_api.genStage2(apose_img, seed, num_levels=1)
        for idx, img in enumerate(results[0]["images"]):
            img.save(f'{tmp_path}/{image_hash}_images_{idx}.png')
        for idx, img in enumerate(results[0]["normals"]):
            img.save(f'{tmp_path}/{image_hash}_normals_{idx}.png')
        cache_multiview[0][image_hash] = {
            "images": [f'{tmp_path}/{image_hash}_images_{idx}.png' for idx in range(len(results[0]["images"]))],
            "normals": [f'{tmp_path}/{image_hash}_normals_{idx}.png' for idx in range(len(results[0]["normals"]))]
        }
        print(f'cached multiview images: {image_hash}')
        return results[0]["images"], image_hash
    else:
        print(f'loaded cached multiview images: {image_hash}')
        return [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["images"]], image_hash

def multiview_to_mesh(images, image_hash):
    if image_hash not in cache_slrm:
        mesh_files = infer_api.genStage3(images)
        cache_slrm[image_hash] = mesh_files
        print(f'cached slrm files: {image_hash}')
    else:
        mesh_files = cache_slrm[image_hash]
        print(f'loaded cached slrm files: {image_hash}')
    return *mesh_files, image_hash

def refine_mesh(mesh1, mesh2, mesh3, seed, image_hash):
    apose_img = Image.open(cache_multiview[0][image_hash]["images"][0])
    if image_hash not in cache_refine:
        results = infer_api.genStage2(apose_img, seed, num_levels=2)
        results[0] = {}
        results[0]["images"] = [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["images"]]
        results[0]["normals"] = [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["normals"]]
        refined = infer_api.genStage4([mesh1, mesh2, mesh3], results)
        cache_refine[image_hash] = refined
        print(f'cached refined mesh: {image_hash}')
    else:
        refined = cache_refine[image_hash]
        print(f'loaded cached refined mesh: {image_hash}')
    
    return refined

with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation from Single Images") as demo:
    gr.Markdown(_HEADER_)
    with gr.Row():
        with gr.Column():
            gr.Markdown("## 1. Reference Image to A-pose Image")
            input_image = gr.Image(label="Input Reference Image", type="numpy", width=384, height=384)
            gr.Examples(
                examples=EXAMPLE_IMAGES,
                inputs=input_image,
                label="Click to use sample images",
            )      
            seed_input = gr.Number(
                label="Seed",
                value=52,
                precision=0,
                interactive=True
            )
            pose_btn = gr.Button("Convert")
        with gr.Column():
            gr.Markdown("## 2. Multi-view Generation")
            a_pose_image = gr.Image(label="A-pose Result", type="numpy", width=384, height=384)
            gr.Examples(
                examples=EXAMPLE_APOSE_IMAGES,
                inputs=a_pose_image,
                label="Click to use sample A-pose images",
            )
            seed_input2 = gr.Number(
                label="Seed",
                value=50,
                precision=0,
                interactive=True
            )
            state2 = gr.State(value="")
            view_btn = gr.Button("Generate Multi-view Images")

        with gr.Column():
            gr.Markdown("## 3. Semantic-aware Reconstruction")
            multiview_gallery = gr.Gallery(
                label="Multi-view results",
                columns=2,
                interactive=False,
                height="None"
            )
            state3 = gr.State(value="")
            mesh_btn = gr.Button("Reconstruct")

    with gr.Row():
        mesh_cols = [gr.Model3D(label=f"Mesh {i+1}", interactive=False, height=384) for i in range(3)]
        full_mesh = gr.Model3D(label="Whole Mesh", height=384)
    refine_btn = gr.Button("Refine")

    gr.Markdown("## 4. Mesh refinement")
    with gr.Row():
        refined_meshes = [gr.Model3D(label=f"refined mesh {i+1}", height=384) for i in range(3)]
        refined_full_mesh = gr.Model3D(label="refined whole mesh", height=384)

    gr.Markdown(_CITE_)

    # 交互逻辑
    pose_btn.click(
        arbitrary_to_apose,
        inputs=[input_image, seed_input],
        outputs=a_pose_image
    )

    view_btn.click(
        apose_to_multiview,
        inputs=[a_pose_image, seed_input2],
        outputs=[multiview_gallery, state2]
    )

    mesh_btn.click(
        multiview_to_mesh,
        inputs=[multiview_gallery, state2],
        outputs=[*mesh_cols, full_mesh, state3]
    )

    refine_btn.click(
        refine_mesh,
        inputs=[*mesh_cols, seed_input2, state3],
        outputs=[refined_meshes[2], refined_meshes[0], refined_meshes[1], refined_full_mesh]
    )

if __name__ == "__main__":
    demo.launch(ssr_mode=False)