iamomtiwari's picture
Update app.py
f81e803 verified
import gradio as gr
import torch
import torchvision.transforms as transforms
from torchvision.models import resnet50
from PIL import Image
from huggingface_hub import hf_hub_download
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = resnet50(pretrained=False)
model.fc = torch.nn.Linear(model.fc.in_features, 14) # Adjust for 14 classes
model_path = hf_hub_download(repo_id="iamomtiwari/resnet50-crop-disease", filename="resnet50_model_hf.pt")
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
# Define image transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Class labels
class_labels = [
"Corn___Common_Rust", "Corn___Gray_Leaf_Spot", "Corn___Healthy", "Corn___Northern_Leaf_Blight",
"Rice___Brown_Spot", "Rice___Healthy", "Rice___Leaf_Blast", "Rice___Neck_Blast",
"Wheat___Brown_Rust", "Wheat___Healthy", "Wheat___Yellow_Rust",
"Sugarcane__Red_Rot", "Sugarcane__Healthy", "Sugarcane__Bacterial Blight"
]
# Prediction function
def predict(image):
try:
image = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
outputs = model(image)
_, predicted_class = torch.max(outputs, 1)
return class_labels[predicted_class.item()]
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
title="Crop Disease Classification",
description="Upload an image to classify crop diseases using ResNet-50."
)
interface.launch()