File size: 7,036 Bytes
8e34f80
 
 
 
 
 
 
 
 
 
 
3957882
8e34f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17785f
8e34f80
 
e17785f
 
8e34f80
 
 
 
 
 
 
 
 
 
 
 
 
e17785f
8e34f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3957882
8f5362f
3957882
8e34f80
 
 
8f5362f
8e34f80
 
8f5362f
8e34f80
 
253ce6a
8f5362f
8e34f80
8f5362f
3957882
 
8f5362f
 
 
 
3957882
8e34f80
8f5362f
8e34f80
 
4385c07
 
8e34f80
 
 
4385c07
8e34f80
ee4f4a6
 
 
 
 
e17785f
4c0fb4c
ee4f4a6
4c0fb4c
8f5362f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
import torch
from PIL import Image
import pandas as pd
from lavis.models import load_model_and_preprocess
from lavis.processors import load_processor
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
import tensorflow as tf
import tensorflow_hub as hub
from sklearn.metrics.pairwise import cosine_similarity


# Import logging module
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Load model and preprocessors for Image-Text Matching (LAVIS)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)

# Load tokenizer and model for Image Captioning (TextCaps)
git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")

# Load Universal Sentence Encoder model for textual similarity calculation
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")

# Define a function to compute textual similarity between caption and statement
def compute_textual_similarity(caption, statement):
    # Convert caption and statement into sentence embeddings
    caption_embedding = embed([caption])[0].numpy()
    statement_embedding = embed([statement])[0].numpy()

    # Calculate cosine similarity between sentence embeddings
    similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0]
    return similarity_score

# List of statements for Image-Text Matching
statements = [
    "contains or features a cartoon, figurine, or toy",
    "appears to be for children",
    "includes children",
    "sexual",
    "nudity",
    "depicts a child or portrays objects, images, or cartoon figures that primarily appeal to persons below the legal purchase age",
    "uses the name of or depicts Santa Claus",
    'promotes alcohol use as a "rite of passage" to adulthood',
    "uses brand identification—including logos, trademarks, or names—on clothing, toys, games, game equipment, or other items intended for use primarily by persons below the legal purchase age",
    "portrays persons in a state of intoxication or in any way suggests that intoxication is socially acceptable conduct",
    "makes curative or therapeutic claims, except as permitted by law",
    "makes claims or representations that individuals can attain social, professional, educational, or athletic success or status due to beverage alcohol consumption",
    "degrades the image, form, or status of women, men, or of any ethnic group, minority, sexual orientation, religious affiliation, or other such group?",
    "uses lewd or indecent images or language",
    "employs religion or religious themes?",
    "relies upon sexual prowess or sexual success as a selling point for the brand",
    "uses graphic or gratuitous nudity, overt sexual activity, promiscuity, or sexually lewd or indecent images or language",
    "associates with anti-social or dangerous behavior",
    "depicts illegal activity of any kind",
    'uses the term "spring break" or sponsors events or activities that use the term "spring break," unless those events or activities are located at a licensed retail establishment',
]

# Function to compute ITM scores for the image-statement pair
def compute_itm_score(image, statement):
    logging.info('Starting compute_itm_score')
    pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
    img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device)
    # Pass the statement text directly to model_itm
    itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm")
    itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
    score = itm_scores[:, 1].item()
    logging.info('Finished compute_itm_score')
    return score

def generate_caption(processor, model, image):
    logging.info('Starting generate_caption')
    inputs = processor(images=image, return_tensors="pt").to(device)
    generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
    generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    logging.info('Finished generate_caption')
    return generated_caption

# Main function to perform image captioning and image-text matching
def process_images_and_statements(image):
    logging.info('Starting process_images_and_statements')

    # Generate image caption for the uploaded image using git-large-r-textcaps
    caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)

    # Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
    weight_textual_similarity = 0.5
    weight_statement = 0.5

    # Initialize an empty DataFrame with column names
    results_df = pd.DataFrame(columns=['Statement', 'Generated Caption', 'Textual Similarity Score', 'ITM Score', 'Final Combined Score'])

    # Loop through each predefined statement
    for statement in statements:
        # Compute textual similarity between caption and statement
        textual_similarity_score = (compute_textual_similarity(caption, statement) * 100)  # Multiply by 100

        # Compute ITM score for the image-statement pair
        itm_score_statement = (compute_itm_score(image, statement) * 100)  # Multiply by 100

        # Combine the two scores using a weighted average
        final_score = ((weight_textual_similarity * textual_similarity_score) +
                       (weight_statement * itm_score_statement))

        # Append the result to the DataFrame with formatted percentage values
        results_df = results_df.append({
            'Statement': statement,
            'Generated Caption': caption,  # Include the generated caption
            'Textual Similarity Score': f"{textual_similarity_score:.2f}%",  # Format as percentage with two decimal places
            'ITM Score': f"{itm_score_statement:.2f}%",  # Format as percentage with two decimal places
            'Final Combined Score': f"{final_score:.2f}%"  # Format as percentage with two decimal places
        }, ignore_index=True)

    logging.info
    logging.info('Finished process_images_and_statements')

    # Return the DataFrame directly as output (no need to convert to HTML)
    return results_df  # <--- Return results_df directly

# Gradio interface
image_input = gr.inputs.Image()
output = gr.outputs.Dataframe(type="pandas", label="Results")  # <--- Use "pandas" type for DataFrame output

iface = gr.Interface(
    fn=process_images_and_statements,
    inputs=image_input,
    outputs=output,
    title="Image Captioning and Image-Text Matching",
    theme='sudeepshouche/minimalist',
    css=".output { flex-direction: column; } .output .outputs { width: 100%; }"  # Custom CSS
)

iface.launch()