test / .ipynb_checkpoints /win_run_app-checkpoint.py
iblfe's picture
Upload folder using huggingface_hub
2912643 verified
raw
history blame
5.6 kB
import os
import sys
import time
import traceback
import webbrowser
# uncomment below to ensure CPU install only uses CPU
# os.environ['CUDA_VISIBLE_DEVICES'] = ''
print('__file__: %s' % __file__)
path1 = os.path.dirname(os.path.abspath(__file__))
sys.path.append(path1)
base_path = os.path.dirname(path1)
sys.path.append(base_path)
os.environ['PYTHONPATH'] = path1
print('path1', path1, flush=True)
os.environ['NLTK_DATA'] = os.path.join(base_path, './nltk_data')
path_list = [os.environ['PATH'],
os.path.join(base_path, 'poppler/Library/bin/'),
os.path.join(base_path, 'poppler/Library/lib/'),
os.path.join(base_path, 'Tesseract-OCR'),
os.path.join(base_path, 'ms-playwright'),
os.path.join(base_path, 'ms-playwright/chromium-1076/chrome-win'),
os.path.join(base_path, 'ms-playwright/ffmpeg-1009'),
os.path.join(base_path, 'ms-playwright/firefox-1422/firefox'),
os.path.join(base_path, 'ms-playwright/webkit-1883'),
os.path.join(base_path, 'rubberband/')]
os.environ['PATH'] = ';'.join(path_list)
print(os.environ['PATH'])
import shutil, errno
def copy_tree(src, dst):
try:
shutil.copytree(src, dst)
except OSError as exc: # python >2.5
if exc.errno in (errno.ENOTDIR, errno.EINVAL):
shutil.copy(src, dst)
else: raise
def setup_paths():
for sub in ['src', 'iterators', 'gradio_utils', 'metrics', 'models', '.']:
path2 = os.path.join(base_path, '..', sub)
if os.path.isdir(path2):
if sub == 'models' and os.path.isfile(os.path.join(path2, 'human.jpg')):
os.environ['H2OGPT_MODEL_BASE'] = path2
sys.path.append(path2)
print(path2, flush=True)
path2 = os.path.join(path1, '..', sub)
if os.path.isdir(path2):
if sub == 'models' and os.path.isfile(os.path.join(path2, 'human.jpg')):
os.environ['H2OGPT_MODEL_BASE'] = path2
sys.path.append(path2)
print(path2, flush=True)
# for app, avoid forbidden for web access
if os.getenv('H2OGPT_MODEL_BASE'):
base0 = os.environ['H2OGPT_MODEL_BASE']
if 'Programs' in os.environ['H2OGPT_MODEL_BASE']:
os.environ['H2OGPT_MODEL_BASE'] = os.environ['H2OGPT_MODEL_BASE'].replace('Programs', 'Temp/gradio/')
shutil.rmtree(os.environ['H2OGPT_MODEL_BASE'])
if os.path.isfile(os.path.join(base0, 'human.jpg')):
copy_tree(base0, os.environ['H2OGPT_MODEL_BASE'])
from importlib.metadata import distribution, PackageNotFoundError
try:
dtorch = distribution('torch')
assert dtorch is not None
have_torch = True
torch_version = dtorch.version
except (PackageNotFoundError, AssertionError):
have_torch = False
torch_version = ''
def _main():
setup_paths()
os.environ['h2ogpt_block_gradio_exit'] = 'False'
os.environ['h2ogpt_score_model'] = ''
try:
from pynvml import nvmlInit, nvmlDeviceGetCount
nvmlInit()
deviceCount = nvmlDeviceGetCount()
except Exception as e:
print("No GPUs detected by NVML: %s" % str(e))
deviceCount = 0
need_get_gpu_torch = False
if have_torch and deviceCount > 0:
if '+cu' not in torch_version:
need_get_gpu_torch = True
elif not have_torch and deviceCount > 0:
need_get_gpu_torch = True
print("Torch Status: have torch: %s need get gpu torch: %s CVD: %s GPUs: %s" % (have_torch, need_get_gpu_torch, os.getenv('CUDA_VISIBLE_DEVICES'), deviceCount))
auto_install_torch_gpu = False
import sys
if auto_install_torch_gpu and (not have_torch or need_get_gpu_torch) and sys.platform == "win32":
print("Installing Torch")
# for one-click, don't have torch installed, install now
import subprocess
import sys
def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
if os.getenv('TORCH_WHEEL'):
print("Installing Torch from %s" % os.getenv('TORCH_WHEEL'))
install(os.getenv('TORCH_WHEEL'))
else:
if need_get_gpu_torch:
wheel_file = "https://h2o-release.s3.amazonaws.com/h2ogpt/torch-2.1.2%2Bcu118-cp310-cp310-win_amd64.whl"
print("Installing Torch from %s" % wheel_file)
install(wheel_file)
# assume cpu torch part of install
#else:
# wheel_file = "https://h2o-release.s3.amazonaws.com/h2ogpt/torch-2.1.2-cp310-cp310-win_amd64.whl"
# print("Installing Torch from %s" % wheel_file)
# install(wheel_file)
import importlib
importlib.invalidate_caches()
import pkg_resources
importlib.reload(pkg_resources) # re-load because otherwise cache would be bad
from generate import entrypoint_main as main_h2ogpt
main_h2ogpt()
server_name = os.getenv('h2ogpt_server_name', os.getenv('H2OGPT_SERVER_NAME', 'localhost'))
server_port = os.getenv('GRADIO_SERVER_PORT', str(7860))
url = "http://%s:%s" % (server_name, server_port)
webbrowser.open(url)
while True:
time.sleep(10000)
def main():
try:
_main()
except BaseException as e:
with open('h2ogpt_exception.log', 'at') as f:
f.write(traceback.format_exc())
time.sleep(10)
raise
time.sleep(10)
if __name__ == "__main__":
main()