Spaces:
Sleeping
Sleeping
Upload 82 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- utils/__init__.py +75 -0
- utils/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/__pycache__/augmentations.cpython-38.pyc +0 -0
- utils/__pycache__/autoanchor.cpython-38.pyc +0 -0
- utils/__pycache__/autobatch.cpython-38.pyc +0 -0
- utils/__pycache__/callbacks.cpython-38.pyc +0 -0
- utils/__pycache__/dataloaders.cpython-38.pyc +0 -0
- utils/__pycache__/downloads.cpython-38.pyc +0 -0
- utils/__pycache__/general.cpython-38.pyc +0 -0
- utils/__pycache__/lion.cpython-38.pyc +0 -0
- utils/__pycache__/loss_tal.cpython-38.pyc +0 -0
- utils/__pycache__/metrics.cpython-38.pyc +0 -0
- utils/__pycache__/plots.cpython-38.pyc +0 -0
- utils/__pycache__/torch_utils.cpython-38.pyc +0 -0
- utils/activations.py +98 -0
- utils/augmentations.py +395 -0
- utils/autoanchor.py +164 -0
- utils/autobatch.py +67 -0
- utils/callbacks.py +71 -0
- utils/dataloaders.py +1217 -0
- utils/downloads.py +103 -0
- utils/general.py +1135 -0
- utils/lion.py +67 -0
- utils/loggers/__init__.py +399 -0
- utils/loggers/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/loggers/clearml/__init__.py +1 -0
- utils/loggers/clearml/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/loggers/clearml/__pycache__/clearml_utils.cpython-38.pyc +0 -0
- utils/loggers/clearml/clearml_utils.py +157 -0
- utils/loggers/clearml/hpo.py +84 -0
- utils/loggers/comet/__init__.py +508 -0
- utils/loggers/comet/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/loggers/comet/__pycache__/comet_utils.cpython-38.pyc +0 -0
- utils/loggers/comet/comet_utils.py +150 -0
- utils/loggers/comet/hpo.py +118 -0
- utils/loggers/comet/optimizer_config.json +209 -0
- utils/loggers/wandb/__init__.py +1 -0
- utils/loggers/wandb/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/loggers/wandb/__pycache__/wandb_utils.cpython-38.pyc +0 -0
- utils/loggers/wandb/log_dataset.py +27 -0
- utils/loggers/wandb/sweep.py +41 -0
- utils/loggers/wandb/sweep.yaml +143 -0
- utils/loggers/wandb/wandb_utils.py +589 -0
- utils/loss.py +363 -0
- utils/loss_tal.py +215 -0
- utils/loss_tal_dual.py +385 -0
- utils/loss_tal_triple.py +282 -0
- utils/metrics.py +397 -0
- utils/panoptic/__init__.py +1 -0
- utils/panoptic/augmentations.py +183 -0
utils/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import platform
|
3 |
+
import threading
|
4 |
+
|
5 |
+
|
6 |
+
def emojis(str=''):
|
7 |
+
# Return platform-dependent emoji-safe version of string
|
8 |
+
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
9 |
+
|
10 |
+
|
11 |
+
class TryExcept(contextlib.ContextDecorator):
|
12 |
+
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
13 |
+
def __init__(self, msg=''):
|
14 |
+
self.msg = msg
|
15 |
+
|
16 |
+
def __enter__(self):
|
17 |
+
pass
|
18 |
+
|
19 |
+
def __exit__(self, exc_type, value, traceback):
|
20 |
+
if value:
|
21 |
+
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
22 |
+
return True
|
23 |
+
|
24 |
+
|
25 |
+
def threaded(func):
|
26 |
+
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
27 |
+
def wrapper(*args, **kwargs):
|
28 |
+
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
29 |
+
thread.start()
|
30 |
+
return thread
|
31 |
+
|
32 |
+
return wrapper
|
33 |
+
|
34 |
+
|
35 |
+
def join_threads(verbose=False):
|
36 |
+
# Join all daemon threads, i.e. atexit.register(lambda: join_threads())
|
37 |
+
main_thread = threading.current_thread()
|
38 |
+
for t in threading.enumerate():
|
39 |
+
if t is not main_thread:
|
40 |
+
if verbose:
|
41 |
+
print(f'Joining thread {t.name}')
|
42 |
+
t.join()
|
43 |
+
|
44 |
+
|
45 |
+
def notebook_init(verbose=True):
|
46 |
+
# Check system software and hardware
|
47 |
+
print('Checking setup...')
|
48 |
+
|
49 |
+
import os
|
50 |
+
import shutil
|
51 |
+
|
52 |
+
from utils.general import check_font, check_requirements, is_colab
|
53 |
+
from utils.torch_utils import select_device # imports
|
54 |
+
|
55 |
+
check_font()
|
56 |
+
|
57 |
+
import psutil
|
58 |
+
from IPython import display # to display images and clear console output
|
59 |
+
|
60 |
+
if is_colab():
|
61 |
+
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
62 |
+
|
63 |
+
# System info
|
64 |
+
if verbose:
|
65 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
66 |
+
ram = psutil.virtual_memory().total
|
67 |
+
total, used, free = shutil.disk_usage("/")
|
68 |
+
display.clear_output()
|
69 |
+
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
70 |
+
else:
|
71 |
+
s = ''
|
72 |
+
|
73 |
+
select_device(newline=False)
|
74 |
+
print(emojis(f'Setup complete ✅ {s}'))
|
75 |
+
return display
|
utils/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (2.52 kB). View file
|
|
utils/__pycache__/augmentations.cpython-38.pyc
ADDED
Binary file (13.8 kB). View file
|
|
utils/__pycache__/autoanchor.cpython-38.pyc
ADDED
Binary file (6.47 kB). View file
|
|
utils/__pycache__/autobatch.cpython-38.pyc
ADDED
Binary file (2.51 kB). View file
|
|
utils/__pycache__/callbacks.cpython-38.pyc
ADDED
Binary file (2.62 kB). View file
|
|
utils/__pycache__/dataloaders.cpython-38.pyc
ADDED
Binary file (43.1 kB). View file
|
|
utils/__pycache__/downloads.cpython-38.pyc
ADDED
Binary file (3.94 kB). View file
|
|
utils/__pycache__/general.cpython-38.pyc
ADDED
Binary file (39.2 kB). View file
|
|
utils/__pycache__/lion.cpython-38.pyc
ADDED
Binary file (2.35 kB). View file
|
|
utils/__pycache__/loss_tal.cpython-38.pyc
ADDED
Binary file (7.16 kB). View file
|
|
utils/__pycache__/metrics.cpython-38.pyc
ADDED
Binary file (12.7 kB). View file
|
|
utils/__pycache__/plots.cpython-38.pyc
ADDED
Binary file (21.6 kB). View file
|
|
utils/__pycache__/torch_utils.cpython-38.pyc
ADDED
Binary file (18.3 kB). View file
|
|
utils/activations.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class SiLU(nn.Module):
|
7 |
+
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
8 |
+
@staticmethod
|
9 |
+
def forward(x):
|
10 |
+
return x * torch.sigmoid(x)
|
11 |
+
|
12 |
+
|
13 |
+
class Hardswish(nn.Module):
|
14 |
+
# Hard-SiLU activation
|
15 |
+
@staticmethod
|
16 |
+
def forward(x):
|
17 |
+
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
18 |
+
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
19 |
+
|
20 |
+
|
21 |
+
class Mish(nn.Module):
|
22 |
+
# Mish activation https://github.com/digantamisra98/Mish
|
23 |
+
@staticmethod
|
24 |
+
def forward(x):
|
25 |
+
return x * F.softplus(x).tanh()
|
26 |
+
|
27 |
+
|
28 |
+
class MemoryEfficientMish(nn.Module):
|
29 |
+
# Mish activation memory-efficient
|
30 |
+
class F(torch.autograd.Function):
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def forward(ctx, x):
|
34 |
+
ctx.save_for_backward(x)
|
35 |
+
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def backward(ctx, grad_output):
|
39 |
+
x = ctx.saved_tensors[0]
|
40 |
+
sx = torch.sigmoid(x)
|
41 |
+
fx = F.softplus(x).tanh()
|
42 |
+
return grad_output * (fx + x * sx * (1 - fx * fx))
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
return self.F.apply(x)
|
46 |
+
|
47 |
+
|
48 |
+
class FReLU(nn.Module):
|
49 |
+
# FReLU activation https://arxiv.org/abs/2007.11824
|
50 |
+
def __init__(self, c1, k=3): # ch_in, kernel
|
51 |
+
super().__init__()
|
52 |
+
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
53 |
+
self.bn = nn.BatchNorm2d(c1)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
return torch.max(x, self.bn(self.conv(x)))
|
57 |
+
|
58 |
+
|
59 |
+
class AconC(nn.Module):
|
60 |
+
r""" ACON activation (activate or not)
|
61 |
+
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
62 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self, c1):
|
66 |
+
super().__init__()
|
67 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
68 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
69 |
+
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
dpx = (self.p1 - self.p2) * x
|
73 |
+
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
74 |
+
|
75 |
+
|
76 |
+
class MetaAconC(nn.Module):
|
77 |
+
r""" ACON activation (activate or not)
|
78 |
+
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
79 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
83 |
+
super().__init__()
|
84 |
+
c2 = max(r, c1 // r)
|
85 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
86 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
87 |
+
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
88 |
+
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
89 |
+
# self.bn1 = nn.BatchNorm2d(c2)
|
90 |
+
# self.bn2 = nn.BatchNorm2d(c1)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
94 |
+
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
95 |
+
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
96 |
+
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
97 |
+
dpx = (self.p1 - self.p2) * x
|
98 |
+
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
utils/augmentations.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as T
|
8 |
+
import torchvision.transforms.functional as TF
|
9 |
+
|
10 |
+
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
11 |
+
from utils.metrics import bbox_ioa
|
12 |
+
|
13 |
+
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
14 |
+
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
15 |
+
|
16 |
+
|
17 |
+
class Albumentations:
|
18 |
+
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
19 |
+
def __init__(self, size=640):
|
20 |
+
self.transform = None
|
21 |
+
prefix = colorstr('albumentations: ')
|
22 |
+
try:
|
23 |
+
import albumentations as A
|
24 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
25 |
+
|
26 |
+
T = [
|
27 |
+
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
28 |
+
A.Blur(p=0.01),
|
29 |
+
A.MedianBlur(p=0.01),
|
30 |
+
A.ToGray(p=0.01),
|
31 |
+
A.CLAHE(p=0.01),
|
32 |
+
A.RandomBrightnessContrast(p=0.0),
|
33 |
+
A.RandomGamma(p=0.0),
|
34 |
+
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
35 |
+
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
36 |
+
|
37 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
38 |
+
except ImportError: # package not installed, skip
|
39 |
+
pass
|
40 |
+
except Exception as e:
|
41 |
+
LOGGER.info(f'{prefix}{e}')
|
42 |
+
|
43 |
+
def __call__(self, im, labels, p=1.0):
|
44 |
+
if self.transform and random.random() < p:
|
45 |
+
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
46 |
+
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
47 |
+
return im, labels
|
48 |
+
|
49 |
+
|
50 |
+
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
51 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
|
52 |
+
return TF.normalize(x, mean, std, inplace=inplace)
|
53 |
+
|
54 |
+
|
55 |
+
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
56 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
|
57 |
+
for i in range(3):
|
58 |
+
x[:, i] = x[:, i] * std[i] + mean[i]
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
63 |
+
# HSV color-space augmentation
|
64 |
+
if hgain or sgain or vgain:
|
65 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
66 |
+
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
67 |
+
dtype = im.dtype # uint8
|
68 |
+
|
69 |
+
x = np.arange(0, 256, dtype=r.dtype)
|
70 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
71 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
72 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
73 |
+
|
74 |
+
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
75 |
+
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
76 |
+
|
77 |
+
|
78 |
+
def hist_equalize(im, clahe=True, bgr=False):
|
79 |
+
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
80 |
+
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
81 |
+
if clahe:
|
82 |
+
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
83 |
+
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
84 |
+
else:
|
85 |
+
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
86 |
+
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
87 |
+
|
88 |
+
|
89 |
+
def replicate(im, labels):
|
90 |
+
# Replicate labels
|
91 |
+
h, w = im.shape[:2]
|
92 |
+
boxes = labels[:, 1:].astype(int)
|
93 |
+
x1, y1, x2, y2 = boxes.T
|
94 |
+
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
95 |
+
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
96 |
+
x1b, y1b, x2b, y2b = boxes[i]
|
97 |
+
bh, bw = y2b - y1b, x2b - x1b
|
98 |
+
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
99 |
+
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
100 |
+
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
101 |
+
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
102 |
+
|
103 |
+
return im, labels
|
104 |
+
|
105 |
+
|
106 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
107 |
+
# Resize and pad image while meeting stride-multiple constraints
|
108 |
+
shape = im.shape[:2] # current shape [height, width]
|
109 |
+
if isinstance(new_shape, int):
|
110 |
+
new_shape = (new_shape, new_shape)
|
111 |
+
|
112 |
+
# Scale ratio (new / old)
|
113 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
114 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
115 |
+
r = min(r, 1.0)
|
116 |
+
|
117 |
+
# Compute padding
|
118 |
+
ratio = r, r # width, height ratios
|
119 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
120 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
121 |
+
if auto: # minimum rectangle
|
122 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
123 |
+
elif scaleFill: # stretch
|
124 |
+
dw, dh = 0.0, 0.0
|
125 |
+
new_unpad = (new_shape[1], new_shape[0])
|
126 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
127 |
+
|
128 |
+
dw /= 2 # divide padding into 2 sides
|
129 |
+
dh /= 2
|
130 |
+
|
131 |
+
if shape[::-1] != new_unpad: # resize
|
132 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
133 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
134 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
135 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
136 |
+
return im, ratio, (dw, dh)
|
137 |
+
|
138 |
+
|
139 |
+
def random_perspective(im,
|
140 |
+
targets=(),
|
141 |
+
segments=(),
|
142 |
+
degrees=10,
|
143 |
+
translate=.1,
|
144 |
+
scale=.1,
|
145 |
+
shear=10,
|
146 |
+
perspective=0.0,
|
147 |
+
border=(0, 0)):
|
148 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
149 |
+
# targets = [cls, xyxy]
|
150 |
+
|
151 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
152 |
+
width = im.shape[1] + border[1] * 2
|
153 |
+
|
154 |
+
# Center
|
155 |
+
C = np.eye(3)
|
156 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
157 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
158 |
+
|
159 |
+
# Perspective
|
160 |
+
P = np.eye(3)
|
161 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
162 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
163 |
+
|
164 |
+
# Rotation and Scale
|
165 |
+
R = np.eye(3)
|
166 |
+
a = random.uniform(-degrees, degrees)
|
167 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
168 |
+
s = random.uniform(1 - scale, 1 + scale)
|
169 |
+
# s = 2 ** random.uniform(-scale, scale)
|
170 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
171 |
+
|
172 |
+
# Shear
|
173 |
+
S = np.eye(3)
|
174 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
175 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
176 |
+
|
177 |
+
# Translation
|
178 |
+
T = np.eye(3)
|
179 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
180 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
181 |
+
|
182 |
+
# Combined rotation matrix
|
183 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
184 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
185 |
+
if perspective:
|
186 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
187 |
+
else: # affine
|
188 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
189 |
+
|
190 |
+
# Visualize
|
191 |
+
# import matplotlib.pyplot as plt
|
192 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
193 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
194 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
195 |
+
|
196 |
+
# Transform label coordinates
|
197 |
+
n = len(targets)
|
198 |
+
if n:
|
199 |
+
use_segments = any(x.any() for x in segments)
|
200 |
+
new = np.zeros((n, 4))
|
201 |
+
if use_segments: # warp segments
|
202 |
+
segments = resample_segments(segments) # upsample
|
203 |
+
for i, segment in enumerate(segments):
|
204 |
+
xy = np.ones((len(segment), 3))
|
205 |
+
xy[:, :2] = segment
|
206 |
+
xy = xy @ M.T # transform
|
207 |
+
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
208 |
+
|
209 |
+
# clip
|
210 |
+
new[i] = segment2box(xy, width, height)
|
211 |
+
|
212 |
+
else: # warp boxes
|
213 |
+
xy = np.ones((n * 4, 3))
|
214 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
215 |
+
xy = xy @ M.T # transform
|
216 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
217 |
+
|
218 |
+
# create new boxes
|
219 |
+
x = xy[:, [0, 2, 4, 6]]
|
220 |
+
y = xy[:, [1, 3, 5, 7]]
|
221 |
+
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
222 |
+
|
223 |
+
# clip
|
224 |
+
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
225 |
+
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
226 |
+
|
227 |
+
# filter candidates
|
228 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
229 |
+
targets = targets[i]
|
230 |
+
targets[:, 1:5] = new[i]
|
231 |
+
|
232 |
+
return im, targets
|
233 |
+
|
234 |
+
|
235 |
+
def copy_paste(im, labels, segments, p=0.5):
|
236 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
237 |
+
n = len(segments)
|
238 |
+
if p and n:
|
239 |
+
h, w, c = im.shape # height, width, channels
|
240 |
+
im_new = np.zeros(im.shape, np.uint8)
|
241 |
+
|
242 |
+
# calculate ioa first then select indexes randomly
|
243 |
+
boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4)
|
244 |
+
ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area
|
245 |
+
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
246 |
+
n = len(indexes)
|
247 |
+
for j in random.sample(list(indexes), k=round(p * n)):
|
248 |
+
l, box, s = labels[j], boxes[j], segments[j]
|
249 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
250 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
251 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
252 |
+
|
253 |
+
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
254 |
+
i = cv2.flip(im_new, 1).astype(bool)
|
255 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
256 |
+
|
257 |
+
return im, labels, segments
|
258 |
+
|
259 |
+
|
260 |
+
def cutout(im, labels, p=0.5):
|
261 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
262 |
+
if random.random() < p:
|
263 |
+
h, w = im.shape[:2]
|
264 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
265 |
+
for s in scales:
|
266 |
+
mask_h = random.randint(1, int(h * s)) # create random masks
|
267 |
+
mask_w = random.randint(1, int(w * s))
|
268 |
+
|
269 |
+
# box
|
270 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
271 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
272 |
+
xmax = min(w, xmin + mask_w)
|
273 |
+
ymax = min(h, ymin + mask_h)
|
274 |
+
|
275 |
+
# apply random color mask
|
276 |
+
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
277 |
+
|
278 |
+
# return unobscured labels
|
279 |
+
if len(labels) and s > 0.03:
|
280 |
+
box = np.array([[xmin, ymin, xmax, ymax]], dtype=np.float32)
|
281 |
+
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))[0] # intersection over area
|
282 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
283 |
+
|
284 |
+
return labels
|
285 |
+
|
286 |
+
|
287 |
+
def mixup(im, labels, im2, labels2):
|
288 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
289 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
290 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
291 |
+
labels = np.concatenate((labels, labels2), 0)
|
292 |
+
return im, labels
|
293 |
+
|
294 |
+
|
295 |
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
296 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
297 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
298 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
299 |
+
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
300 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
301 |
+
|
302 |
+
|
303 |
+
def classify_albumentations(
|
304 |
+
augment=True,
|
305 |
+
size=224,
|
306 |
+
scale=(0.08, 1.0),
|
307 |
+
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
308 |
+
hflip=0.5,
|
309 |
+
vflip=0.0,
|
310 |
+
jitter=0.4,
|
311 |
+
mean=IMAGENET_MEAN,
|
312 |
+
std=IMAGENET_STD,
|
313 |
+
auto_aug=False):
|
314 |
+
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
315 |
+
prefix = colorstr('albumentations: ')
|
316 |
+
try:
|
317 |
+
import albumentations as A
|
318 |
+
from albumentations.pytorch import ToTensorV2
|
319 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
320 |
+
if augment: # Resize and crop
|
321 |
+
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
322 |
+
if auto_aug:
|
323 |
+
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
324 |
+
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
325 |
+
else:
|
326 |
+
if hflip > 0:
|
327 |
+
T += [A.HorizontalFlip(p=hflip)]
|
328 |
+
if vflip > 0:
|
329 |
+
T += [A.VerticalFlip(p=vflip)]
|
330 |
+
if jitter > 0:
|
331 |
+
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
|
332 |
+
T += [A.ColorJitter(*color_jitter, 0)]
|
333 |
+
else: # Use fixed crop for eval set (reproducibility)
|
334 |
+
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
335 |
+
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
336 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
337 |
+
return A.Compose(T)
|
338 |
+
|
339 |
+
except ImportError: # package not installed, skip
|
340 |
+
LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
|
341 |
+
except Exception as e:
|
342 |
+
LOGGER.info(f'{prefix}{e}')
|
343 |
+
|
344 |
+
|
345 |
+
def classify_transforms(size=224):
|
346 |
+
# Transforms to apply if albumentations not installed
|
347 |
+
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
|
348 |
+
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
349 |
+
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
350 |
+
|
351 |
+
|
352 |
+
class LetterBox:
|
353 |
+
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
354 |
+
def __init__(self, size=(640, 640), auto=False, stride=32):
|
355 |
+
super().__init__()
|
356 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
357 |
+
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
358 |
+
self.stride = stride # used with auto
|
359 |
+
|
360 |
+
def __call__(self, im): # im = np.array HWC
|
361 |
+
imh, imw = im.shape[:2]
|
362 |
+
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
363 |
+
h, w = round(imh * r), round(imw * r) # resized image
|
364 |
+
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
365 |
+
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
366 |
+
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
367 |
+
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
368 |
+
return im_out
|
369 |
+
|
370 |
+
|
371 |
+
class CenterCrop:
|
372 |
+
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
373 |
+
def __init__(self, size=640):
|
374 |
+
super().__init__()
|
375 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
376 |
+
|
377 |
+
def __call__(self, im): # im = np.array HWC
|
378 |
+
imh, imw = im.shape[:2]
|
379 |
+
m = min(imh, imw) # min dimension
|
380 |
+
top, left = (imh - m) // 2, (imw - m) // 2
|
381 |
+
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
382 |
+
|
383 |
+
|
384 |
+
class ToTensor:
|
385 |
+
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
386 |
+
def __init__(self, half=False):
|
387 |
+
super().__init__()
|
388 |
+
self.half = half
|
389 |
+
|
390 |
+
def __call__(self, im): # im = np.array HWC in BGR order
|
391 |
+
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
392 |
+
im = torch.from_numpy(im) # to torch
|
393 |
+
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
394 |
+
im /= 255.0 # 0-255 to 0.0-1.0
|
395 |
+
return im
|
utils/autoanchor.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import yaml
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from utils import TryExcept
|
9 |
+
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
|
10 |
+
|
11 |
+
PREFIX = colorstr('AutoAnchor: ')
|
12 |
+
|
13 |
+
|
14 |
+
def check_anchor_order(m):
|
15 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
16 |
+
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
17 |
+
da = a[-1] - a[0] # delta a
|
18 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
19 |
+
if da and (da.sign() != ds.sign()): # same order
|
20 |
+
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
21 |
+
m.anchors[:] = m.anchors.flip(0)
|
22 |
+
|
23 |
+
|
24 |
+
@TryExcept(f'{PREFIX}ERROR')
|
25 |
+
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
26 |
+
# Check anchor fit to data, recompute if necessary
|
27 |
+
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
28 |
+
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
29 |
+
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
30 |
+
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
31 |
+
|
32 |
+
def metric(k): # compute metric
|
33 |
+
r = wh[:, None] / k[None]
|
34 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
35 |
+
best = x.max(1)[0] # best_x
|
36 |
+
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
37 |
+
bpr = (best > 1 / thr).float().mean() # best possible recall
|
38 |
+
return bpr, aat
|
39 |
+
|
40 |
+
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
41 |
+
anchors = m.anchors.clone() * stride # current anchors
|
42 |
+
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
43 |
+
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
44 |
+
if bpr > 0.98: # threshold to recompute
|
45 |
+
LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
|
46 |
+
else:
|
47 |
+
LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
|
48 |
+
na = m.anchors.numel() // 2 # number of anchors
|
49 |
+
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
50 |
+
new_bpr = metric(anchors)[0]
|
51 |
+
if new_bpr > bpr: # replace anchors
|
52 |
+
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
53 |
+
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
54 |
+
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
55 |
+
m.anchors /= stride
|
56 |
+
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
57 |
+
else:
|
58 |
+
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
59 |
+
LOGGER.info(s)
|
60 |
+
|
61 |
+
|
62 |
+
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
63 |
+
""" Creates kmeans-evolved anchors from training dataset
|
64 |
+
|
65 |
+
Arguments:
|
66 |
+
dataset: path to data.yaml, or a loaded dataset
|
67 |
+
n: number of anchors
|
68 |
+
img_size: image size used for training
|
69 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
70 |
+
gen: generations to evolve anchors using genetic algorithm
|
71 |
+
verbose: print all results
|
72 |
+
|
73 |
+
Return:
|
74 |
+
k: kmeans evolved anchors
|
75 |
+
|
76 |
+
Usage:
|
77 |
+
from utils.autoanchor import *; _ = kmean_anchors()
|
78 |
+
"""
|
79 |
+
from scipy.cluster.vq import kmeans
|
80 |
+
|
81 |
+
npr = np.random
|
82 |
+
thr = 1 / thr
|
83 |
+
|
84 |
+
def metric(k, wh): # compute metrics
|
85 |
+
r = wh[:, None] / k[None]
|
86 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
87 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
88 |
+
return x, x.max(1)[0] # x, best_x
|
89 |
+
|
90 |
+
def anchor_fitness(k): # mutation fitness
|
91 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
92 |
+
return (best * (best > thr).float()).mean() # fitness
|
93 |
+
|
94 |
+
def print_results(k, verbose=True):
|
95 |
+
k = k[np.argsort(k.prod(1))] # sort small to large
|
96 |
+
x, best = metric(k, wh0)
|
97 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
98 |
+
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
99 |
+
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
100 |
+
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
101 |
+
for x in k:
|
102 |
+
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
103 |
+
if verbose:
|
104 |
+
LOGGER.info(s[:-2])
|
105 |
+
return k
|
106 |
+
|
107 |
+
if isinstance(dataset, str): # *.yaml file
|
108 |
+
with open(dataset, errors='ignore') as f:
|
109 |
+
data_dict = yaml.safe_load(f) # model dict
|
110 |
+
from utils.dataloaders import LoadImagesAndLabels
|
111 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
112 |
+
|
113 |
+
# Get label wh
|
114 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
115 |
+
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
116 |
+
|
117 |
+
# Filter
|
118 |
+
i = (wh0 < 3.0).any(1).sum()
|
119 |
+
if i:
|
120 |
+
LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
|
121 |
+
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
122 |
+
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
123 |
+
|
124 |
+
# Kmeans init
|
125 |
+
try:
|
126 |
+
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
127 |
+
assert n <= len(wh) # apply overdetermined constraint
|
128 |
+
s = wh.std(0) # sigmas for whitening
|
129 |
+
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
130 |
+
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
131 |
+
except Exception:
|
132 |
+
LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
|
133 |
+
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
134 |
+
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
135 |
+
k = print_results(k, verbose=False)
|
136 |
+
|
137 |
+
# Plot
|
138 |
+
# k, d = [None] * 20, [None] * 20
|
139 |
+
# for i in tqdm(range(1, 21)):
|
140 |
+
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
141 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
142 |
+
# ax = ax.ravel()
|
143 |
+
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
144 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
145 |
+
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
146 |
+
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
147 |
+
# fig.savefig('wh.png', dpi=200)
|
148 |
+
|
149 |
+
# Evolve
|
150 |
+
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
151 |
+
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
|
152 |
+
for _ in pbar:
|
153 |
+
v = np.ones(sh)
|
154 |
+
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
155 |
+
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
156 |
+
kg = (k.copy() * v).clip(min=2.0)
|
157 |
+
fg = anchor_fitness(kg)
|
158 |
+
if fg > f:
|
159 |
+
f, k = fg, kg.copy()
|
160 |
+
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
161 |
+
if verbose:
|
162 |
+
print_results(k, verbose)
|
163 |
+
|
164 |
+
return print_results(k).astype(np.float32)
|
utils/autobatch.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from utils.general import LOGGER, colorstr
|
7 |
+
from utils.torch_utils import profile
|
8 |
+
|
9 |
+
|
10 |
+
def check_train_batch_size(model, imgsz=640, amp=True):
|
11 |
+
# Check YOLOv5 training batch size
|
12 |
+
with torch.cuda.amp.autocast(amp):
|
13 |
+
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
14 |
+
|
15 |
+
|
16 |
+
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
17 |
+
# Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
|
18 |
+
# Usage:
|
19 |
+
# import torch
|
20 |
+
# from utils.autobatch import autobatch
|
21 |
+
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
22 |
+
# print(autobatch(model))
|
23 |
+
|
24 |
+
# Check device
|
25 |
+
prefix = colorstr('AutoBatch: ')
|
26 |
+
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
27 |
+
device = next(model.parameters()).device # get model device
|
28 |
+
if device.type == 'cpu':
|
29 |
+
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
30 |
+
return batch_size
|
31 |
+
if torch.backends.cudnn.benchmark:
|
32 |
+
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
|
33 |
+
return batch_size
|
34 |
+
|
35 |
+
# Inspect CUDA memory
|
36 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
37 |
+
d = str(device).upper() # 'CUDA:0'
|
38 |
+
properties = torch.cuda.get_device_properties(device) # device properties
|
39 |
+
t = properties.total_memory / gb # GiB total
|
40 |
+
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
41 |
+
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
42 |
+
f = t - (r + a) # GiB free
|
43 |
+
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
44 |
+
|
45 |
+
# Profile batch sizes
|
46 |
+
batch_sizes = [1, 2, 4, 8, 16]
|
47 |
+
try:
|
48 |
+
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
49 |
+
results = profile(img, model, n=3, device=device)
|
50 |
+
except Exception as e:
|
51 |
+
LOGGER.warning(f'{prefix}{e}')
|
52 |
+
|
53 |
+
# Fit a solution
|
54 |
+
y = [x[2] for x in results if x] # memory [2]
|
55 |
+
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
56 |
+
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
57 |
+
if None in results: # some sizes failed
|
58 |
+
i = results.index(None) # first fail index
|
59 |
+
if b >= batch_sizes[i]: # y intercept above failure point
|
60 |
+
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
61 |
+
if b < 1 or b > 1024: # b outside of safe range
|
62 |
+
b = batch_size
|
63 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
|
64 |
+
|
65 |
+
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
66 |
+
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
67 |
+
return b
|
utils/callbacks.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import threading
|
2 |
+
|
3 |
+
|
4 |
+
class Callbacks:
|
5 |
+
""""
|
6 |
+
Handles all registered callbacks for YOLOv5 Hooks
|
7 |
+
"""
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
# Define the available callbacks
|
11 |
+
self._callbacks = {
|
12 |
+
'on_pretrain_routine_start': [],
|
13 |
+
'on_pretrain_routine_end': [],
|
14 |
+
'on_train_start': [],
|
15 |
+
'on_train_epoch_start': [],
|
16 |
+
'on_train_batch_start': [],
|
17 |
+
'optimizer_step': [],
|
18 |
+
'on_before_zero_grad': [],
|
19 |
+
'on_train_batch_end': [],
|
20 |
+
'on_train_epoch_end': [],
|
21 |
+
'on_val_start': [],
|
22 |
+
'on_val_batch_start': [],
|
23 |
+
'on_val_image_end': [],
|
24 |
+
'on_val_batch_end': [],
|
25 |
+
'on_val_end': [],
|
26 |
+
'on_fit_epoch_end': [], # fit = train + val
|
27 |
+
'on_model_save': [],
|
28 |
+
'on_train_end': [],
|
29 |
+
'on_params_update': [],
|
30 |
+
'teardown': [],}
|
31 |
+
self.stop_training = False # set True to interrupt training
|
32 |
+
|
33 |
+
def register_action(self, hook, name='', callback=None):
|
34 |
+
"""
|
35 |
+
Register a new action to a callback hook
|
36 |
+
|
37 |
+
Args:
|
38 |
+
hook: The callback hook name to register the action to
|
39 |
+
name: The name of the action for later reference
|
40 |
+
callback: The callback to fire
|
41 |
+
"""
|
42 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
43 |
+
assert callable(callback), f"callback '{callback}' is not callable"
|
44 |
+
self._callbacks[hook].append({'name': name, 'callback': callback})
|
45 |
+
|
46 |
+
def get_registered_actions(self, hook=None):
|
47 |
+
""""
|
48 |
+
Returns all the registered actions by callback hook
|
49 |
+
|
50 |
+
Args:
|
51 |
+
hook: The name of the hook to check, defaults to all
|
52 |
+
"""
|
53 |
+
return self._callbacks[hook] if hook else self._callbacks
|
54 |
+
|
55 |
+
def run(self, hook, *args, thread=False, **kwargs):
|
56 |
+
"""
|
57 |
+
Loop through the registered actions and fire all callbacks on main thread
|
58 |
+
|
59 |
+
Args:
|
60 |
+
hook: The name of the hook to check, defaults to all
|
61 |
+
args: Arguments to receive from YOLOv5
|
62 |
+
thread: (boolean) Run callbacks in daemon thread
|
63 |
+
kwargs: Keyword Arguments to receive from YOLOv5
|
64 |
+
"""
|
65 |
+
|
66 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
67 |
+
for logger in self._callbacks[hook]:
|
68 |
+
if thread:
|
69 |
+
threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
|
70 |
+
else:
|
71 |
+
logger['callback'](*args, **kwargs)
|
utils/dataloaders.py
ADDED
@@ -0,0 +1,1217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import glob
|
3 |
+
import hashlib
|
4 |
+
import json
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import shutil
|
9 |
+
import time
|
10 |
+
from itertools import repeat
|
11 |
+
from multiprocessing.pool import Pool, ThreadPool
|
12 |
+
from pathlib import Path
|
13 |
+
from threading import Thread
|
14 |
+
from urllib.parse import urlparse
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import psutil
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import torchvision
|
21 |
+
import yaml
|
22 |
+
from PIL import ExifTags, Image, ImageOps
|
23 |
+
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
|
24 |
+
from tqdm import tqdm
|
25 |
+
|
26 |
+
from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
|
27 |
+
letterbox, mixup, random_perspective)
|
28 |
+
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
|
29 |
+
check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
|
30 |
+
xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
|
31 |
+
from utils.torch_utils import torch_distributed_zero_first
|
32 |
+
|
33 |
+
# Parameters
|
34 |
+
HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
35 |
+
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes
|
36 |
+
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
37 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
38 |
+
RANK = int(os.getenv('RANK', -1))
|
39 |
+
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
|
40 |
+
|
41 |
+
# Get orientation exif tag
|
42 |
+
for orientation in ExifTags.TAGS.keys():
|
43 |
+
if ExifTags.TAGS[orientation] == 'Orientation':
|
44 |
+
break
|
45 |
+
|
46 |
+
|
47 |
+
def get_hash(paths):
|
48 |
+
# Returns a single hash value of a list of paths (files or dirs)
|
49 |
+
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
50 |
+
h = hashlib.md5(str(size).encode()) # hash sizes
|
51 |
+
h.update(''.join(paths).encode()) # hash paths
|
52 |
+
return h.hexdigest() # return hash
|
53 |
+
|
54 |
+
|
55 |
+
def exif_size(img):
|
56 |
+
# Returns exif-corrected PIL size
|
57 |
+
s = img.size # (width, height)
|
58 |
+
with contextlib.suppress(Exception):
|
59 |
+
rotation = dict(img._getexif().items())[orientation]
|
60 |
+
if rotation in [6, 8]: # rotation 270 or 90
|
61 |
+
s = (s[1], s[0])
|
62 |
+
return s
|
63 |
+
|
64 |
+
|
65 |
+
def exif_transpose(image):
|
66 |
+
"""
|
67 |
+
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
68 |
+
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
|
69 |
+
|
70 |
+
:param image: The image to transpose.
|
71 |
+
:return: An image.
|
72 |
+
"""
|
73 |
+
exif = image.getexif()
|
74 |
+
orientation = exif.get(0x0112, 1) # default 1
|
75 |
+
if orientation > 1:
|
76 |
+
method = {
|
77 |
+
2: Image.FLIP_LEFT_RIGHT,
|
78 |
+
3: Image.ROTATE_180,
|
79 |
+
4: Image.FLIP_TOP_BOTTOM,
|
80 |
+
5: Image.TRANSPOSE,
|
81 |
+
6: Image.ROTATE_270,
|
82 |
+
7: Image.TRANSVERSE,
|
83 |
+
8: Image.ROTATE_90}.get(orientation)
|
84 |
+
if method is not None:
|
85 |
+
image = image.transpose(method)
|
86 |
+
del exif[0x0112]
|
87 |
+
image.info["exif"] = exif.tobytes()
|
88 |
+
return image
|
89 |
+
|
90 |
+
|
91 |
+
def seed_worker(worker_id):
|
92 |
+
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
|
93 |
+
worker_seed = torch.initial_seed() % 2 ** 32
|
94 |
+
np.random.seed(worker_seed)
|
95 |
+
random.seed(worker_seed)
|
96 |
+
|
97 |
+
|
98 |
+
def create_dataloader(path,
|
99 |
+
imgsz,
|
100 |
+
batch_size,
|
101 |
+
stride,
|
102 |
+
single_cls=False,
|
103 |
+
hyp=None,
|
104 |
+
augment=False,
|
105 |
+
cache=False,
|
106 |
+
pad=0.0,
|
107 |
+
rect=False,
|
108 |
+
rank=-1,
|
109 |
+
workers=8,
|
110 |
+
image_weights=False,
|
111 |
+
close_mosaic=False,
|
112 |
+
quad=False,
|
113 |
+
min_items=0,
|
114 |
+
prefix='',
|
115 |
+
shuffle=False):
|
116 |
+
if rect and shuffle:
|
117 |
+
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
118 |
+
shuffle = False
|
119 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
120 |
+
dataset = LoadImagesAndLabels(
|
121 |
+
path,
|
122 |
+
imgsz,
|
123 |
+
batch_size,
|
124 |
+
augment=augment, # augmentation
|
125 |
+
hyp=hyp, # hyperparameters
|
126 |
+
rect=rect, # rectangular batches
|
127 |
+
cache_images=cache,
|
128 |
+
single_cls=single_cls,
|
129 |
+
stride=int(stride),
|
130 |
+
pad=pad,
|
131 |
+
image_weights=image_weights,
|
132 |
+
min_items=min_items,
|
133 |
+
prefix=prefix)
|
134 |
+
|
135 |
+
batch_size = min(batch_size, len(dataset))
|
136 |
+
nd = torch.cuda.device_count() # number of CUDA devices
|
137 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
138 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
139 |
+
#loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
140 |
+
loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
|
141 |
+
generator = torch.Generator()
|
142 |
+
generator.manual_seed(6148914691236517205 + RANK)
|
143 |
+
return loader(dataset,
|
144 |
+
batch_size=batch_size,
|
145 |
+
shuffle=shuffle and sampler is None,
|
146 |
+
num_workers=nw,
|
147 |
+
sampler=sampler,
|
148 |
+
pin_memory=PIN_MEMORY,
|
149 |
+
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
|
150 |
+
worker_init_fn=seed_worker,
|
151 |
+
generator=generator), dataset
|
152 |
+
|
153 |
+
|
154 |
+
class InfiniteDataLoader(dataloader.DataLoader):
|
155 |
+
""" Dataloader that reuses workers
|
156 |
+
|
157 |
+
Uses same syntax as vanilla DataLoader
|
158 |
+
"""
|
159 |
+
|
160 |
+
def __init__(self, *args, **kwargs):
|
161 |
+
super().__init__(*args, **kwargs)
|
162 |
+
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
163 |
+
self.iterator = super().__iter__()
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
return len(self.batch_sampler.sampler)
|
167 |
+
|
168 |
+
def __iter__(self):
|
169 |
+
for _ in range(len(self)):
|
170 |
+
yield next(self.iterator)
|
171 |
+
|
172 |
+
|
173 |
+
class _RepeatSampler:
|
174 |
+
""" Sampler that repeats forever
|
175 |
+
|
176 |
+
Args:
|
177 |
+
sampler (Sampler)
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self, sampler):
|
181 |
+
self.sampler = sampler
|
182 |
+
|
183 |
+
def __iter__(self):
|
184 |
+
while True:
|
185 |
+
yield from iter(self.sampler)
|
186 |
+
|
187 |
+
|
188 |
+
class LoadScreenshots:
|
189 |
+
# YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
|
190 |
+
def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
|
191 |
+
# source = [screen_number left top width height] (pixels)
|
192 |
+
check_requirements('mss')
|
193 |
+
import mss
|
194 |
+
|
195 |
+
source, *params = source.split()
|
196 |
+
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
|
197 |
+
if len(params) == 1:
|
198 |
+
self.screen = int(params[0])
|
199 |
+
elif len(params) == 4:
|
200 |
+
left, top, width, height = (int(x) for x in params)
|
201 |
+
elif len(params) == 5:
|
202 |
+
self.screen, left, top, width, height = (int(x) for x in params)
|
203 |
+
self.img_size = img_size
|
204 |
+
self.stride = stride
|
205 |
+
self.transforms = transforms
|
206 |
+
self.auto = auto
|
207 |
+
self.mode = 'stream'
|
208 |
+
self.frame = 0
|
209 |
+
self.sct = mss.mss()
|
210 |
+
|
211 |
+
# Parse monitor shape
|
212 |
+
monitor = self.sct.monitors[self.screen]
|
213 |
+
self.top = monitor["top"] if top is None else (monitor["top"] + top)
|
214 |
+
self.left = monitor["left"] if left is None else (monitor["left"] + left)
|
215 |
+
self.width = width or monitor["width"]
|
216 |
+
self.height = height or monitor["height"]
|
217 |
+
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
|
218 |
+
|
219 |
+
def __iter__(self):
|
220 |
+
return self
|
221 |
+
|
222 |
+
def __next__(self):
|
223 |
+
# mss screen capture: get raw pixels from the screen as np array
|
224 |
+
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
|
225 |
+
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
|
226 |
+
|
227 |
+
if self.transforms:
|
228 |
+
im = self.transforms(im0) # transforms
|
229 |
+
else:
|
230 |
+
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
231 |
+
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
232 |
+
im = np.ascontiguousarray(im) # contiguous
|
233 |
+
self.frame += 1
|
234 |
+
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
|
235 |
+
|
236 |
+
|
237 |
+
class LoadImages:
|
238 |
+
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
|
239 |
+
def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
240 |
+
files = []
|
241 |
+
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
|
242 |
+
p = str(Path(p).resolve())
|
243 |
+
if '*' in p:
|
244 |
+
files.extend(sorted(glob.glob(p, recursive=True))) # glob
|
245 |
+
elif os.path.isdir(p):
|
246 |
+
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
|
247 |
+
elif os.path.isfile(p):
|
248 |
+
files.append(p) # files
|
249 |
+
else:
|
250 |
+
raise FileNotFoundError(f'{p} does not exist')
|
251 |
+
|
252 |
+
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
253 |
+
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
254 |
+
ni, nv = len(images), len(videos)
|
255 |
+
|
256 |
+
self.img_size = img_size
|
257 |
+
self.stride = stride
|
258 |
+
self.files = images + videos
|
259 |
+
self.nf = ni + nv # number of files
|
260 |
+
self.video_flag = [False] * ni + [True] * nv
|
261 |
+
self.mode = 'image'
|
262 |
+
self.auto = auto
|
263 |
+
self.transforms = transforms # optional
|
264 |
+
self.vid_stride = vid_stride # video frame-rate stride
|
265 |
+
if any(videos):
|
266 |
+
self._new_video(videos[0]) # new video
|
267 |
+
else:
|
268 |
+
self.cap = None
|
269 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
270 |
+
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
271 |
+
|
272 |
+
def __iter__(self):
|
273 |
+
self.count = 0
|
274 |
+
return self
|
275 |
+
|
276 |
+
def __next__(self):
|
277 |
+
if self.count == self.nf:
|
278 |
+
raise StopIteration
|
279 |
+
path = self.files[self.count]
|
280 |
+
|
281 |
+
if self.video_flag[self.count]:
|
282 |
+
# Read video
|
283 |
+
self.mode = 'video'
|
284 |
+
for _ in range(self.vid_stride):
|
285 |
+
self.cap.grab()
|
286 |
+
ret_val, im0 = self.cap.retrieve()
|
287 |
+
while not ret_val:
|
288 |
+
self.count += 1
|
289 |
+
self.cap.release()
|
290 |
+
if self.count == self.nf: # last video
|
291 |
+
raise StopIteration
|
292 |
+
path = self.files[self.count]
|
293 |
+
self._new_video(path)
|
294 |
+
ret_val, im0 = self.cap.read()
|
295 |
+
|
296 |
+
self.frame += 1
|
297 |
+
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
|
298 |
+
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
|
299 |
+
|
300 |
+
else:
|
301 |
+
# Read image
|
302 |
+
self.count += 1
|
303 |
+
im0 = cv2.imread(path) # BGR
|
304 |
+
assert im0 is not None, f'Image Not Found {path}'
|
305 |
+
s = f'image {self.count}/{self.nf} {path}: '
|
306 |
+
|
307 |
+
if self.transforms:
|
308 |
+
im = self.transforms(im0) # transforms
|
309 |
+
else:
|
310 |
+
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
311 |
+
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
312 |
+
im = np.ascontiguousarray(im) # contiguous
|
313 |
+
|
314 |
+
return path, im, im0, self.cap, s
|
315 |
+
|
316 |
+
def _new_video(self, path):
|
317 |
+
# Create a new video capture object
|
318 |
+
self.frame = 0
|
319 |
+
self.cap = cv2.VideoCapture(path)
|
320 |
+
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
|
321 |
+
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
|
322 |
+
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493
|
323 |
+
|
324 |
+
def _cv2_rotate(self, im):
|
325 |
+
# Rotate a cv2 video manually
|
326 |
+
if self.orientation == 0:
|
327 |
+
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
|
328 |
+
elif self.orientation == 180:
|
329 |
+
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
330 |
+
elif self.orientation == 90:
|
331 |
+
return cv2.rotate(im, cv2.ROTATE_180)
|
332 |
+
return im
|
333 |
+
|
334 |
+
def __len__(self):
|
335 |
+
return self.nf # number of files
|
336 |
+
|
337 |
+
|
338 |
+
class LoadStreams:
|
339 |
+
# YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
340 |
+
def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
341 |
+
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
|
342 |
+
self.mode = 'stream'
|
343 |
+
self.img_size = img_size
|
344 |
+
self.stride = stride
|
345 |
+
self.vid_stride = vid_stride # video frame-rate stride
|
346 |
+
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
|
347 |
+
n = len(sources)
|
348 |
+
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
349 |
+
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
350 |
+
for i, s in enumerate(sources): # index, source
|
351 |
+
# Start thread to read frames from video stream
|
352 |
+
st = f'{i + 1}/{n}: {s}... '
|
353 |
+
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
|
354 |
+
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
|
355 |
+
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
|
356 |
+
import pafy
|
357 |
+
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
|
358 |
+
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
359 |
+
if s == 0:
|
360 |
+
assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
|
361 |
+
assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
|
362 |
+
cap = cv2.VideoCapture(s)
|
363 |
+
assert cap.isOpened(), f'{st}Failed to open {s}'
|
364 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
365 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
366 |
+
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
|
367 |
+
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
|
368 |
+
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
|
369 |
+
|
370 |
+
_, self.imgs[i] = cap.read() # guarantee first frame
|
371 |
+
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
|
372 |
+
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
373 |
+
self.threads[i].start()
|
374 |
+
LOGGER.info('') # newline
|
375 |
+
|
376 |
+
# check for common shapes
|
377 |
+
s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
|
378 |
+
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
379 |
+
self.auto = auto and self.rect
|
380 |
+
self.transforms = transforms # optional
|
381 |
+
if not self.rect:
|
382 |
+
LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
|
383 |
+
|
384 |
+
def update(self, i, cap, stream):
|
385 |
+
# Read stream `i` frames in daemon thread
|
386 |
+
n, f = 0, self.frames[i] # frame number, frame array
|
387 |
+
while cap.isOpened() and n < f:
|
388 |
+
n += 1
|
389 |
+
cap.grab() # .read() = .grab() followed by .retrieve()
|
390 |
+
if n % self.vid_stride == 0:
|
391 |
+
success, im = cap.retrieve()
|
392 |
+
if success:
|
393 |
+
self.imgs[i] = im
|
394 |
+
else:
|
395 |
+
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
|
396 |
+
self.imgs[i] = np.zeros_like(self.imgs[i])
|
397 |
+
cap.open(stream) # re-open stream if signal was lost
|
398 |
+
time.sleep(0.0) # wait time
|
399 |
+
|
400 |
+
def __iter__(self):
|
401 |
+
self.count = -1
|
402 |
+
return self
|
403 |
+
|
404 |
+
def __next__(self):
|
405 |
+
self.count += 1
|
406 |
+
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
|
407 |
+
cv2.destroyAllWindows()
|
408 |
+
raise StopIteration
|
409 |
+
|
410 |
+
im0 = self.imgs.copy()
|
411 |
+
if self.transforms:
|
412 |
+
im = np.stack([self.transforms(x) for x in im0]) # transforms
|
413 |
+
else:
|
414 |
+
im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) # resize
|
415 |
+
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
416 |
+
im = np.ascontiguousarray(im) # contiguous
|
417 |
+
|
418 |
+
return self.sources, im, im0, None, ''
|
419 |
+
|
420 |
+
def __len__(self):
|
421 |
+
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
|
422 |
+
|
423 |
+
|
424 |
+
def img2label_paths(img_paths):
|
425 |
+
# Define label paths as a function of image paths
|
426 |
+
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
|
427 |
+
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
428 |
+
|
429 |
+
|
430 |
+
class LoadImagesAndLabels(Dataset):
|
431 |
+
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
|
432 |
+
cache_version = 0.6 # dataset labels *.cache version
|
433 |
+
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
434 |
+
|
435 |
+
def __init__(self,
|
436 |
+
path,
|
437 |
+
img_size=640,
|
438 |
+
batch_size=16,
|
439 |
+
augment=False,
|
440 |
+
hyp=None,
|
441 |
+
rect=False,
|
442 |
+
image_weights=False,
|
443 |
+
cache_images=False,
|
444 |
+
single_cls=False,
|
445 |
+
stride=32,
|
446 |
+
pad=0.0,
|
447 |
+
min_items=0,
|
448 |
+
prefix=''):
|
449 |
+
self.img_size = img_size
|
450 |
+
self.augment = augment
|
451 |
+
self.hyp = hyp
|
452 |
+
self.image_weights = image_weights
|
453 |
+
self.rect = False if image_weights else rect
|
454 |
+
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
455 |
+
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
456 |
+
self.stride = stride
|
457 |
+
self.path = path
|
458 |
+
self.albumentations = Albumentations(size=img_size) if augment else None
|
459 |
+
|
460 |
+
try:
|
461 |
+
f = [] # image files
|
462 |
+
for p in path if isinstance(path, list) else [path]:
|
463 |
+
p = Path(p) # os-agnostic
|
464 |
+
if p.is_dir(): # dir
|
465 |
+
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
466 |
+
# f = list(p.rglob('*.*')) # pathlib
|
467 |
+
elif p.is_file(): # file
|
468 |
+
with open(p) as t:
|
469 |
+
t = t.read().strip().splitlines()
|
470 |
+
parent = str(p.parent) + os.sep
|
471 |
+
f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t] # to global path
|
472 |
+
# f += [p.parent / x.lstrip(os.sep) for x in t] # to global path (pathlib)
|
473 |
+
else:
|
474 |
+
raise FileNotFoundError(f'{prefix}{p} does not exist')
|
475 |
+
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
|
476 |
+
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
477 |
+
assert self.im_files, f'{prefix}No images found'
|
478 |
+
except Exception as e:
|
479 |
+
raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
480 |
+
|
481 |
+
# Check cache
|
482 |
+
self.label_files = img2label_paths(self.im_files) # labels
|
483 |
+
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
484 |
+
try:
|
485 |
+
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
|
486 |
+
assert cache['version'] == self.cache_version # matches current version
|
487 |
+
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
|
488 |
+
except Exception:
|
489 |
+
cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops
|
490 |
+
|
491 |
+
# Display cache
|
492 |
+
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
493 |
+
if exists and LOCAL_RANK in {-1, 0}:
|
494 |
+
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
495 |
+
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
|
496 |
+
if cache['msgs']:
|
497 |
+
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
498 |
+
assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
|
499 |
+
|
500 |
+
# Read cache
|
501 |
+
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
502 |
+
labels, shapes, self.segments = zip(*cache.values())
|
503 |
+
nl = len(np.concatenate(labels, 0)) # number of labels
|
504 |
+
assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
|
505 |
+
self.labels = list(labels)
|
506 |
+
self.shapes = np.array(shapes)
|
507 |
+
self.im_files = list(cache.keys()) # update
|
508 |
+
self.label_files = img2label_paths(cache.keys()) # update
|
509 |
+
|
510 |
+
# Filter images
|
511 |
+
if min_items:
|
512 |
+
include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
|
513 |
+
LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset')
|
514 |
+
self.im_files = [self.im_files[i] for i in include]
|
515 |
+
self.label_files = [self.label_files[i] for i in include]
|
516 |
+
self.labels = [self.labels[i] for i in include]
|
517 |
+
self.segments = [self.segments[i] for i in include]
|
518 |
+
self.shapes = self.shapes[include] # wh
|
519 |
+
|
520 |
+
# Create indices
|
521 |
+
n = len(self.shapes) # number of images
|
522 |
+
bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
|
523 |
+
nb = bi[-1] + 1 # number of batches
|
524 |
+
self.batch = bi # batch index of image
|
525 |
+
self.n = n
|
526 |
+
self.indices = range(n)
|
527 |
+
|
528 |
+
# Update labels
|
529 |
+
include_class = [] # filter labels to include only these classes (optional)
|
530 |
+
include_class_array = np.array(include_class).reshape(1, -1)
|
531 |
+
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
|
532 |
+
if include_class:
|
533 |
+
j = (label[:, 0:1] == include_class_array).any(1)
|
534 |
+
self.labels[i] = label[j]
|
535 |
+
if segment:
|
536 |
+
self.segments[i] = segment[j]
|
537 |
+
if single_cls: # single-class training, merge all classes into 0
|
538 |
+
self.labels[i][:, 0] = 0
|
539 |
+
|
540 |
+
# Rectangular Training
|
541 |
+
if self.rect:
|
542 |
+
# Sort by aspect ratio
|
543 |
+
s = self.shapes # wh
|
544 |
+
ar = s[:, 1] / s[:, 0] # aspect ratio
|
545 |
+
irect = ar.argsort()
|
546 |
+
self.im_files = [self.im_files[i] for i in irect]
|
547 |
+
self.label_files = [self.label_files[i] for i in irect]
|
548 |
+
self.labels = [self.labels[i] for i in irect]
|
549 |
+
self.segments = [self.segments[i] for i in irect]
|
550 |
+
self.shapes = s[irect] # wh
|
551 |
+
ar = ar[irect]
|
552 |
+
|
553 |
+
# Set training image shapes
|
554 |
+
shapes = [[1, 1]] * nb
|
555 |
+
for i in range(nb):
|
556 |
+
ari = ar[bi == i]
|
557 |
+
mini, maxi = ari.min(), ari.max()
|
558 |
+
if maxi < 1:
|
559 |
+
shapes[i] = [maxi, 1]
|
560 |
+
elif mini > 1:
|
561 |
+
shapes[i] = [1, 1 / mini]
|
562 |
+
|
563 |
+
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
|
564 |
+
|
565 |
+
# Cache images into RAM/disk for faster training
|
566 |
+
if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix):
|
567 |
+
cache_images = False
|
568 |
+
self.ims = [None] * n
|
569 |
+
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
|
570 |
+
if cache_images:
|
571 |
+
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
572 |
+
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
573 |
+
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
574 |
+
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
|
575 |
+
pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
|
576 |
+
for i, x in pbar:
|
577 |
+
if cache_images == 'disk':
|
578 |
+
b += self.npy_files[i].stat().st_size
|
579 |
+
else: # 'ram'
|
580 |
+
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
581 |
+
b += self.ims[i].nbytes
|
582 |
+
pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})'
|
583 |
+
pbar.close()
|
584 |
+
|
585 |
+
def check_cache_ram(self, safety_margin=0.1, prefix=''):
|
586 |
+
# Check image caching requirements vs available memory
|
587 |
+
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
588 |
+
n = min(self.n, 30) # extrapolate from 30 random images
|
589 |
+
for _ in range(n):
|
590 |
+
im = cv2.imread(random.choice(self.im_files)) # sample image
|
591 |
+
ratio = self.img_size / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
|
592 |
+
b += im.nbytes * ratio ** 2
|
593 |
+
mem_required = b * self.n / n # GB required to cache dataset into RAM
|
594 |
+
mem = psutil.virtual_memory()
|
595 |
+
cache = mem_required * (1 + safety_margin) < mem.available # to cache or not to cache, that is the question
|
596 |
+
if not cache:
|
597 |
+
LOGGER.info(f"{prefix}{mem_required / gb:.1f}GB RAM required, "
|
598 |
+
f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, "
|
599 |
+
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
|
600 |
+
return cache
|
601 |
+
|
602 |
+
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
603 |
+
# Cache dataset labels, check images and read shapes
|
604 |
+
x = {} # dict
|
605 |
+
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
606 |
+
desc = f"{prefix}Scanning {path.parent / path.stem}..."
|
607 |
+
with Pool(NUM_THREADS) as pool:
|
608 |
+
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
|
609 |
+
desc=desc,
|
610 |
+
total=len(self.im_files),
|
611 |
+
bar_format=TQDM_BAR_FORMAT)
|
612 |
+
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
613 |
+
nm += nm_f
|
614 |
+
nf += nf_f
|
615 |
+
ne += ne_f
|
616 |
+
nc += nc_f
|
617 |
+
if im_file:
|
618 |
+
x[im_file] = [lb, shape, segments]
|
619 |
+
if msg:
|
620 |
+
msgs.append(msg)
|
621 |
+
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
622 |
+
|
623 |
+
pbar.close()
|
624 |
+
if msgs:
|
625 |
+
LOGGER.info('\n'.join(msgs))
|
626 |
+
if nf == 0:
|
627 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
|
628 |
+
x['hash'] = get_hash(self.label_files + self.im_files)
|
629 |
+
x['results'] = nf, nm, ne, nc, len(self.im_files)
|
630 |
+
x['msgs'] = msgs # warnings
|
631 |
+
x['version'] = self.cache_version # cache version
|
632 |
+
try:
|
633 |
+
np.save(path, x) # save cache for next time
|
634 |
+
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
635 |
+
LOGGER.info(f'{prefix}New cache created: {path}')
|
636 |
+
except Exception as e:
|
637 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}') # not writeable
|
638 |
+
return x
|
639 |
+
|
640 |
+
def __len__(self):
|
641 |
+
return len(self.im_files)
|
642 |
+
|
643 |
+
# def __iter__(self):
|
644 |
+
# self.count = -1
|
645 |
+
# print('ran dataset iter')
|
646 |
+
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
647 |
+
# return self
|
648 |
+
|
649 |
+
def __getitem__(self, index):
|
650 |
+
index = self.indices[index] # linear, shuffled, or image_weights
|
651 |
+
|
652 |
+
hyp = self.hyp
|
653 |
+
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
654 |
+
if mosaic:
|
655 |
+
# Load mosaic
|
656 |
+
img, labels = self.load_mosaic(index)
|
657 |
+
shapes = None
|
658 |
+
|
659 |
+
# MixUp augmentation
|
660 |
+
if random.random() < hyp['mixup']:
|
661 |
+
img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
|
662 |
+
|
663 |
+
else:
|
664 |
+
# Load image
|
665 |
+
img, (h0, w0), (h, w) = self.load_image(index)
|
666 |
+
|
667 |
+
# Letterbox
|
668 |
+
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
669 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
670 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
671 |
+
|
672 |
+
labels = self.labels[index].copy()
|
673 |
+
if labels.size: # normalized xywh to pixel xyxy format
|
674 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
675 |
+
|
676 |
+
if self.augment:
|
677 |
+
img, labels = random_perspective(img,
|
678 |
+
labels,
|
679 |
+
degrees=hyp['degrees'],
|
680 |
+
translate=hyp['translate'],
|
681 |
+
scale=hyp['scale'],
|
682 |
+
shear=hyp['shear'],
|
683 |
+
perspective=hyp['perspective'])
|
684 |
+
|
685 |
+
nl = len(labels) # number of labels
|
686 |
+
if nl:
|
687 |
+
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
|
688 |
+
|
689 |
+
if self.augment:
|
690 |
+
# Albumentations
|
691 |
+
img, labels = self.albumentations(img, labels)
|
692 |
+
nl = len(labels) # update after albumentations
|
693 |
+
|
694 |
+
# HSV color-space
|
695 |
+
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
696 |
+
|
697 |
+
# Flip up-down
|
698 |
+
if random.random() < hyp['flipud']:
|
699 |
+
img = np.flipud(img)
|
700 |
+
if nl:
|
701 |
+
labels[:, 2] = 1 - labels[:, 2]
|
702 |
+
|
703 |
+
# Flip left-right
|
704 |
+
if random.random() < hyp['fliplr']:
|
705 |
+
img = np.fliplr(img)
|
706 |
+
if nl:
|
707 |
+
labels[:, 1] = 1 - labels[:, 1]
|
708 |
+
|
709 |
+
# Cutouts
|
710 |
+
# labels = cutout(img, labels, p=0.5)
|
711 |
+
# nl = len(labels) # update after cutout
|
712 |
+
|
713 |
+
labels_out = torch.zeros((nl, 6))
|
714 |
+
if nl:
|
715 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
716 |
+
|
717 |
+
# Convert
|
718 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
719 |
+
img = np.ascontiguousarray(img)
|
720 |
+
|
721 |
+
return torch.from_numpy(img), labels_out, self.im_files[index], shapes
|
722 |
+
|
723 |
+
def load_image(self, i):
|
724 |
+
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
|
725 |
+
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
|
726 |
+
if im is None: # not cached in RAM
|
727 |
+
if fn.exists(): # load npy
|
728 |
+
im = np.load(fn)
|
729 |
+
else: # read image
|
730 |
+
im = cv2.imread(f) # BGR
|
731 |
+
assert im is not None, f'Image Not Found {f}'
|
732 |
+
h0, w0 = im.shape[:2] # orig hw
|
733 |
+
r = self.img_size / max(h0, w0) # ratio
|
734 |
+
if r != 1: # if sizes are not equal
|
735 |
+
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
|
736 |
+
im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
737 |
+
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
738 |
+
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
|
739 |
+
|
740 |
+
def cache_images_to_disk(self, i):
|
741 |
+
# Saves an image as an *.npy file for faster loading
|
742 |
+
f = self.npy_files[i]
|
743 |
+
if not f.exists():
|
744 |
+
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
|
745 |
+
|
746 |
+
def load_mosaic(self, index):
|
747 |
+
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
748 |
+
labels4, segments4 = [], []
|
749 |
+
s = self.img_size
|
750 |
+
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
751 |
+
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
752 |
+
random.shuffle(indices)
|
753 |
+
for i, index in enumerate(indices):
|
754 |
+
# Load image
|
755 |
+
img, _, (h, w) = self.load_image(index)
|
756 |
+
|
757 |
+
# place img in img4
|
758 |
+
if i == 0: # top left
|
759 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
760 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
761 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
762 |
+
elif i == 1: # top right
|
763 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
764 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
765 |
+
elif i == 2: # bottom left
|
766 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
767 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
768 |
+
elif i == 3: # bottom right
|
769 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
770 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
771 |
+
|
772 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
773 |
+
padw = x1a - x1b
|
774 |
+
padh = y1a - y1b
|
775 |
+
|
776 |
+
# Labels
|
777 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
778 |
+
if labels.size:
|
779 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
780 |
+
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
781 |
+
labels4.append(labels)
|
782 |
+
segments4.extend(segments)
|
783 |
+
|
784 |
+
# Concat/clip labels
|
785 |
+
labels4 = np.concatenate(labels4, 0)
|
786 |
+
for x in (labels4[:, 1:], *segments4):
|
787 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
788 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
789 |
+
|
790 |
+
# Augment
|
791 |
+
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
|
792 |
+
img4, labels4 = random_perspective(img4,
|
793 |
+
labels4,
|
794 |
+
segments4,
|
795 |
+
degrees=self.hyp['degrees'],
|
796 |
+
translate=self.hyp['translate'],
|
797 |
+
scale=self.hyp['scale'],
|
798 |
+
shear=self.hyp['shear'],
|
799 |
+
perspective=self.hyp['perspective'],
|
800 |
+
border=self.mosaic_border) # border to remove
|
801 |
+
|
802 |
+
return img4, labels4
|
803 |
+
|
804 |
+
def load_mosaic9(self, index):
|
805 |
+
# YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
|
806 |
+
labels9, segments9 = [], []
|
807 |
+
s = self.img_size
|
808 |
+
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
|
809 |
+
random.shuffle(indices)
|
810 |
+
hp, wp = -1, -1 # height, width previous
|
811 |
+
for i, index in enumerate(indices):
|
812 |
+
# Load image
|
813 |
+
img, _, (h, w) = self.load_image(index)
|
814 |
+
|
815 |
+
# place img in img9
|
816 |
+
if i == 0: # center
|
817 |
+
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
818 |
+
h0, w0 = h, w
|
819 |
+
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
820 |
+
elif i == 1: # top
|
821 |
+
c = s, s - h, s + w, s
|
822 |
+
elif i == 2: # top right
|
823 |
+
c = s + wp, s - h, s + wp + w, s
|
824 |
+
elif i == 3: # right
|
825 |
+
c = s + w0, s, s + w0 + w, s + h
|
826 |
+
elif i == 4: # bottom right
|
827 |
+
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
828 |
+
elif i == 5: # bottom
|
829 |
+
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
830 |
+
elif i == 6: # bottom left
|
831 |
+
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
832 |
+
elif i == 7: # left
|
833 |
+
c = s - w, s + h0 - h, s, s + h0
|
834 |
+
elif i == 8: # top left
|
835 |
+
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
836 |
+
|
837 |
+
padx, pady = c[:2]
|
838 |
+
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
|
839 |
+
|
840 |
+
# Labels
|
841 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
842 |
+
if labels.size:
|
843 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
844 |
+
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
845 |
+
labels9.append(labels)
|
846 |
+
segments9.extend(segments)
|
847 |
+
|
848 |
+
# Image
|
849 |
+
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
850 |
+
hp, wp = h, w # height, width previous
|
851 |
+
|
852 |
+
# Offset
|
853 |
+
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
|
854 |
+
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
855 |
+
|
856 |
+
# Concat/clip labels
|
857 |
+
labels9 = np.concatenate(labels9, 0)
|
858 |
+
labels9[:, [1, 3]] -= xc
|
859 |
+
labels9[:, [2, 4]] -= yc
|
860 |
+
c = np.array([xc, yc]) # centers
|
861 |
+
segments9 = [x - c for x in segments9]
|
862 |
+
|
863 |
+
for x in (labels9[:, 1:], *segments9):
|
864 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
865 |
+
# img9, labels9 = replicate(img9, labels9) # replicate
|
866 |
+
|
867 |
+
# Augment
|
868 |
+
img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste'])
|
869 |
+
img9, labels9 = random_perspective(img9,
|
870 |
+
labels9,
|
871 |
+
segments9,
|
872 |
+
degrees=self.hyp['degrees'],
|
873 |
+
translate=self.hyp['translate'],
|
874 |
+
scale=self.hyp['scale'],
|
875 |
+
shear=self.hyp['shear'],
|
876 |
+
perspective=self.hyp['perspective'],
|
877 |
+
border=self.mosaic_border) # border to remove
|
878 |
+
|
879 |
+
return img9, labels9
|
880 |
+
|
881 |
+
@staticmethod
|
882 |
+
def collate_fn(batch):
|
883 |
+
im, label, path, shapes = zip(*batch) # transposed
|
884 |
+
for i, lb in enumerate(label):
|
885 |
+
lb[:, 0] = i # add target image index for build_targets()
|
886 |
+
return torch.stack(im, 0), torch.cat(label, 0), path, shapes
|
887 |
+
|
888 |
+
@staticmethod
|
889 |
+
def collate_fn4(batch):
|
890 |
+
im, label, path, shapes = zip(*batch) # transposed
|
891 |
+
n = len(shapes) // 4
|
892 |
+
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
|
893 |
+
|
894 |
+
ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
|
895 |
+
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
|
896 |
+
s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
|
897 |
+
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
|
898 |
+
i *= 4
|
899 |
+
if random.random() < 0.5:
|
900 |
+
im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
|
901 |
+
align_corners=False)[0].type(im[i].type())
|
902 |
+
lb = label[i]
|
903 |
+
else:
|
904 |
+
im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2)
|
905 |
+
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
|
906 |
+
im4.append(im1)
|
907 |
+
label4.append(lb)
|
908 |
+
|
909 |
+
for i, lb in enumerate(label4):
|
910 |
+
lb[:, 0] = i # add target image index for build_targets()
|
911 |
+
|
912 |
+
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
|
913 |
+
|
914 |
+
|
915 |
+
# Ancillary functions --------------------------------------------------------------------------------------------------
|
916 |
+
def flatten_recursive(path=DATASETS_DIR / 'coco128'):
|
917 |
+
# Flatten a recursive directory by bringing all files to top level
|
918 |
+
new_path = Path(f'{str(path)}_flat')
|
919 |
+
if os.path.exists(new_path):
|
920 |
+
shutil.rmtree(new_path) # delete output folder
|
921 |
+
os.makedirs(new_path) # make new output folder
|
922 |
+
for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
|
923 |
+
shutil.copyfile(file, new_path / Path(file).name)
|
924 |
+
|
925 |
+
|
926 |
+
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
|
927 |
+
# Convert detection dataset into classification dataset, with one directory per class
|
928 |
+
path = Path(path) # images dir
|
929 |
+
shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing
|
930 |
+
files = list(path.rglob('*.*'))
|
931 |
+
n = len(files) # number of files
|
932 |
+
for im_file in tqdm(files, total=n):
|
933 |
+
if im_file.suffix[1:] in IMG_FORMATS:
|
934 |
+
# image
|
935 |
+
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
936 |
+
h, w = im.shape[:2]
|
937 |
+
|
938 |
+
# labels
|
939 |
+
lb_file = Path(img2label_paths([str(im_file)])[0])
|
940 |
+
if Path(lb_file).exists():
|
941 |
+
with open(lb_file) as f:
|
942 |
+
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
943 |
+
|
944 |
+
for j, x in enumerate(lb):
|
945 |
+
c = int(x[0]) # class
|
946 |
+
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
947 |
+
if not f.parent.is_dir():
|
948 |
+
f.parent.mkdir(parents=True)
|
949 |
+
|
950 |
+
b = x[1:] * [w, h, w, h] # box
|
951 |
+
# b[2:] = b[2:].max() # rectangle to square
|
952 |
+
b[2:] = b[2:] * 1.2 + 3 # pad
|
953 |
+
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
|
954 |
+
|
955 |
+
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
956 |
+
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
957 |
+
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
958 |
+
|
959 |
+
|
960 |
+
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
961 |
+
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
962 |
+
Usage: from utils.dataloaders import *; autosplit()
|
963 |
+
Arguments
|
964 |
+
path: Path to images directory
|
965 |
+
weights: Train, val, test weights (list, tuple)
|
966 |
+
annotated_only: Only use images with an annotated txt file
|
967 |
+
"""
|
968 |
+
path = Path(path) # images dir
|
969 |
+
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
970 |
+
n = len(files) # number of files
|
971 |
+
random.seed(0) # for reproducibility
|
972 |
+
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
973 |
+
|
974 |
+
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
975 |
+
for x in txt:
|
976 |
+
if (path.parent / x).exists():
|
977 |
+
(path.parent / x).unlink() # remove existing
|
978 |
+
|
979 |
+
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
980 |
+
for i, img in tqdm(zip(indices, files), total=n):
|
981 |
+
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
982 |
+
with open(path.parent / txt[i], 'a') as f:
|
983 |
+
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file
|
984 |
+
|
985 |
+
|
986 |
+
def verify_image_label(args):
|
987 |
+
# Verify one image-label pair
|
988 |
+
im_file, lb_file, prefix = args
|
989 |
+
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
990 |
+
try:
|
991 |
+
# verify images
|
992 |
+
im = Image.open(im_file)
|
993 |
+
im.verify() # PIL verify
|
994 |
+
shape = exif_size(im) # image size
|
995 |
+
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
996 |
+
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
997 |
+
if im.format.lower() in ('jpg', 'jpeg'):
|
998 |
+
with open(im_file, 'rb') as f:
|
999 |
+
f.seek(-2, 2)
|
1000 |
+
if f.read() != b'\xff\xd9': # corrupt JPEG
|
1001 |
+
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
1002 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
|
1003 |
+
|
1004 |
+
# verify labels
|
1005 |
+
if os.path.isfile(lb_file):
|
1006 |
+
nf = 1 # label found
|
1007 |
+
with open(lb_file) as f:
|
1008 |
+
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
1009 |
+
if any(len(x) > 6 for x in lb): # is segment
|
1010 |
+
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
1011 |
+
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
1012 |
+
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
1013 |
+
lb = np.array(lb, dtype=np.float32)
|
1014 |
+
nl = len(lb)
|
1015 |
+
if nl:
|
1016 |
+
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
1017 |
+
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
1018 |
+
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
1019 |
+
_, i = np.unique(lb, axis=0, return_index=True)
|
1020 |
+
if len(i) < nl: # duplicate row check
|
1021 |
+
lb = lb[i] # remove duplicates
|
1022 |
+
if segments:
|
1023 |
+
segments = [segments[x] for x in i]
|
1024 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
|
1025 |
+
else:
|
1026 |
+
ne = 1 # label empty
|
1027 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
1028 |
+
else:
|
1029 |
+
nm = 1 # label missing
|
1030 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
1031 |
+
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
|
1032 |
+
except Exception as e:
|
1033 |
+
nc = 1
|
1034 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
|
1035 |
+
return [None, None, None, None, nm, nf, ne, nc, msg]
|
1036 |
+
|
1037 |
+
|
1038 |
+
class HUBDatasetStats():
|
1039 |
+
""" Class for generating HUB dataset JSON and `-hub` dataset directory
|
1040 |
+
|
1041 |
+
Arguments
|
1042 |
+
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
1043 |
+
autodownload: Attempt to download dataset if not found locally
|
1044 |
+
|
1045 |
+
Usage
|
1046 |
+
from utils.dataloaders import HUBDatasetStats
|
1047 |
+
stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1
|
1048 |
+
stats = HUBDatasetStats('path/to/coco128.zip') # usage 2
|
1049 |
+
stats.get_json(save=False)
|
1050 |
+
stats.process_images()
|
1051 |
+
"""
|
1052 |
+
|
1053 |
+
def __init__(self, path='coco128.yaml', autodownload=False):
|
1054 |
+
# Initialize class
|
1055 |
+
zipped, data_dir, yaml_path = self._unzip(Path(path))
|
1056 |
+
try:
|
1057 |
+
with open(check_yaml(yaml_path), errors='ignore') as f:
|
1058 |
+
data = yaml.safe_load(f) # data dict
|
1059 |
+
if zipped:
|
1060 |
+
data['path'] = data_dir
|
1061 |
+
except Exception as e:
|
1062 |
+
raise Exception("error/HUB/dataset_stats/yaml_load") from e
|
1063 |
+
|
1064 |
+
check_dataset(data, autodownload) # download dataset if missing
|
1065 |
+
self.hub_dir = Path(data['path'] + '-hub')
|
1066 |
+
self.im_dir = self.hub_dir / 'images'
|
1067 |
+
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
|
1068 |
+
self.stats = {'nc': data['nc'], 'names': list(data['names'].values())} # statistics dictionary
|
1069 |
+
self.data = data
|
1070 |
+
|
1071 |
+
@staticmethod
|
1072 |
+
def _find_yaml(dir):
|
1073 |
+
# Return data.yaml file
|
1074 |
+
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
|
1075 |
+
assert files, f'No *.yaml file found in {dir}'
|
1076 |
+
if len(files) > 1:
|
1077 |
+
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
|
1078 |
+
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
|
1079 |
+
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
|
1080 |
+
return files[0]
|
1081 |
+
|
1082 |
+
def _unzip(self, path):
|
1083 |
+
# Unzip data.zip
|
1084 |
+
if not str(path).endswith('.zip'): # path is data.yaml
|
1085 |
+
return False, None, path
|
1086 |
+
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
1087 |
+
unzip_file(path, path=path.parent)
|
1088 |
+
dir = path.with_suffix('') # dataset directory == zip name
|
1089 |
+
assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
|
1090 |
+
return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path
|
1091 |
+
|
1092 |
+
def _hub_ops(self, f, max_dim=1920):
|
1093 |
+
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
|
1094 |
+
f_new = self.im_dir / Path(f).name # dataset-hub image filename
|
1095 |
+
try: # use PIL
|
1096 |
+
im = Image.open(f)
|
1097 |
+
r = max_dim / max(im.height, im.width) # ratio
|
1098 |
+
if r < 1.0: # image too large
|
1099 |
+
im = im.resize((int(im.width * r), int(im.height * r)))
|
1100 |
+
im.save(f_new, 'JPEG', quality=50, optimize=True) # save
|
1101 |
+
except Exception as e: # use OpenCV
|
1102 |
+
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
|
1103 |
+
im = cv2.imread(f)
|
1104 |
+
im_height, im_width = im.shape[:2]
|
1105 |
+
r = max_dim / max(im_height, im_width) # ratio
|
1106 |
+
if r < 1.0: # image too large
|
1107 |
+
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
1108 |
+
cv2.imwrite(str(f_new), im)
|
1109 |
+
|
1110 |
+
def get_json(self, save=False, verbose=False):
|
1111 |
+
# Return dataset JSON for Ultralytics HUB
|
1112 |
+
def _round(labels):
|
1113 |
+
# Update labels to integer class and 6 decimal place floats
|
1114 |
+
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
|
1115 |
+
|
1116 |
+
for split in 'train', 'val', 'test':
|
1117 |
+
if self.data.get(split) is None:
|
1118 |
+
self.stats[split] = None # i.e. no test set
|
1119 |
+
continue
|
1120 |
+
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
1121 |
+
x = np.array([
|
1122 |
+
np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
|
1123 |
+
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')]) # shape(128x80)
|
1124 |
+
self.stats[split] = {
|
1125 |
+
'instance_stats': {
|
1126 |
+
'total': int(x.sum()),
|
1127 |
+
'per_class': x.sum(0).tolist()},
|
1128 |
+
'image_stats': {
|
1129 |
+
'total': dataset.n,
|
1130 |
+
'unlabelled': int(np.all(x == 0, 1).sum()),
|
1131 |
+
'per_class': (x > 0).sum(0).tolist()},
|
1132 |
+
'labels': [{
|
1133 |
+
str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
|
1134 |
+
|
1135 |
+
# Save, print and return
|
1136 |
+
if save:
|
1137 |
+
stats_path = self.hub_dir / 'stats.json'
|
1138 |
+
print(f'Saving {stats_path.resolve()}...')
|
1139 |
+
with open(stats_path, 'w') as f:
|
1140 |
+
json.dump(self.stats, f) # save stats.json
|
1141 |
+
if verbose:
|
1142 |
+
print(json.dumps(self.stats, indent=2, sort_keys=False))
|
1143 |
+
return self.stats
|
1144 |
+
|
1145 |
+
def process_images(self):
|
1146 |
+
# Compress images for Ultralytics HUB
|
1147 |
+
for split in 'train', 'val', 'test':
|
1148 |
+
if self.data.get(split) is None:
|
1149 |
+
continue
|
1150 |
+
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
1151 |
+
desc = f'{split} images'
|
1152 |
+
for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
|
1153 |
+
pass
|
1154 |
+
print(f'Done. All images saved to {self.im_dir}')
|
1155 |
+
return self.im_dir
|
1156 |
+
|
1157 |
+
|
1158 |
+
# Classification dataloaders -------------------------------------------------------------------------------------------
|
1159 |
+
class ClassificationDataset(torchvision.datasets.ImageFolder):
|
1160 |
+
"""
|
1161 |
+
YOLOv5 Classification Dataset.
|
1162 |
+
Arguments
|
1163 |
+
root: Dataset path
|
1164 |
+
transform: torchvision transforms, used by default
|
1165 |
+
album_transform: Albumentations transforms, used if installed
|
1166 |
+
"""
|
1167 |
+
|
1168 |
+
def __init__(self, root, augment, imgsz, cache=False):
|
1169 |
+
super().__init__(root=root)
|
1170 |
+
self.torch_transforms = classify_transforms(imgsz)
|
1171 |
+
self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
|
1172 |
+
self.cache_ram = cache is True or cache == 'ram'
|
1173 |
+
self.cache_disk = cache == 'disk'
|
1174 |
+
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
|
1175 |
+
|
1176 |
+
def __getitem__(self, i):
|
1177 |
+
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
|
1178 |
+
if self.cache_ram and im is None:
|
1179 |
+
im = self.samples[i][3] = cv2.imread(f)
|
1180 |
+
elif self.cache_disk:
|
1181 |
+
if not fn.exists(): # load npy
|
1182 |
+
np.save(fn.as_posix(), cv2.imread(f))
|
1183 |
+
im = np.load(fn)
|
1184 |
+
else: # read image
|
1185 |
+
im = cv2.imread(f) # BGR
|
1186 |
+
if self.album_transforms:
|
1187 |
+
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
|
1188 |
+
else:
|
1189 |
+
sample = self.torch_transforms(im)
|
1190 |
+
return sample, j
|
1191 |
+
|
1192 |
+
|
1193 |
+
def create_classification_dataloader(path,
|
1194 |
+
imgsz=224,
|
1195 |
+
batch_size=16,
|
1196 |
+
augment=True,
|
1197 |
+
cache=False,
|
1198 |
+
rank=-1,
|
1199 |
+
workers=8,
|
1200 |
+
shuffle=True):
|
1201 |
+
# Returns Dataloader object to be used with YOLOv5 Classifier
|
1202 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
1203 |
+
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
|
1204 |
+
batch_size = min(batch_size, len(dataset))
|
1205 |
+
nd = torch.cuda.device_count()
|
1206 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
|
1207 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
1208 |
+
generator = torch.Generator()
|
1209 |
+
generator.manual_seed(6148914691236517205 + RANK)
|
1210 |
+
return InfiniteDataLoader(dataset,
|
1211 |
+
batch_size=batch_size,
|
1212 |
+
shuffle=shuffle and sampler is None,
|
1213 |
+
num_workers=nw,
|
1214 |
+
sampler=sampler,
|
1215 |
+
pin_memory=PIN_MEMORY,
|
1216 |
+
worker_init_fn=seed_worker,
|
1217 |
+
generator=generator) # or DataLoader(persistent_workers=True)
|
utils/downloads.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
import urllib
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import requests
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def is_url(url, check=True):
|
12 |
+
# Check if string is URL and check if URL exists
|
13 |
+
try:
|
14 |
+
url = str(url)
|
15 |
+
result = urllib.parse.urlparse(url)
|
16 |
+
assert all([result.scheme, result.netloc]) # check if is url
|
17 |
+
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
|
18 |
+
except (AssertionError, urllib.request.HTTPError):
|
19 |
+
return False
|
20 |
+
|
21 |
+
|
22 |
+
def gsutil_getsize(url=''):
|
23 |
+
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
24 |
+
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
25 |
+
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
26 |
+
|
27 |
+
|
28 |
+
def url_getsize(url='https://ultralytics.com/images/bus.jpg'):
|
29 |
+
# Return downloadable file size in bytes
|
30 |
+
response = requests.head(url, allow_redirects=True)
|
31 |
+
return int(response.headers.get('content-length', -1))
|
32 |
+
|
33 |
+
|
34 |
+
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
35 |
+
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
36 |
+
from utils.general import LOGGER
|
37 |
+
|
38 |
+
file = Path(file)
|
39 |
+
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
40 |
+
try: # url1
|
41 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
42 |
+
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
43 |
+
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
44 |
+
except Exception as e: # url2
|
45 |
+
if file.exists():
|
46 |
+
file.unlink() # remove partial downloads
|
47 |
+
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
48 |
+
os.system(f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
49 |
+
finally:
|
50 |
+
if not file.exists() or file.stat().st_size < min_bytes: # check
|
51 |
+
if file.exists():
|
52 |
+
file.unlink() # remove partial downloads
|
53 |
+
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
54 |
+
LOGGER.info('')
|
55 |
+
|
56 |
+
|
57 |
+
def attempt_download(file, repo='ultralytics/yolov5', release='v7.0'):
|
58 |
+
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v7.0', etc.
|
59 |
+
from utils.general import LOGGER
|
60 |
+
|
61 |
+
def github_assets(repository, version='latest'):
|
62 |
+
# Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
63 |
+
if version != 'latest':
|
64 |
+
version = f'tags/{version}' # i.e. tags/v7.0
|
65 |
+
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
66 |
+
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
67 |
+
|
68 |
+
file = Path(str(file).strip().replace("'", ''))
|
69 |
+
if not file.exists():
|
70 |
+
# URL specified
|
71 |
+
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
72 |
+
if str(file).startswith(('http:/', 'https:/')): # download
|
73 |
+
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
74 |
+
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
75 |
+
if Path(file).is_file():
|
76 |
+
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
77 |
+
else:
|
78 |
+
safe_download(file=file, url=url, min_bytes=1E5)
|
79 |
+
return file
|
80 |
+
|
81 |
+
# GitHub assets
|
82 |
+
assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default
|
83 |
+
try:
|
84 |
+
tag, assets = github_assets(repo, release)
|
85 |
+
except Exception:
|
86 |
+
try:
|
87 |
+
tag, assets = github_assets(repo) # latest release
|
88 |
+
except Exception:
|
89 |
+
try:
|
90 |
+
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
91 |
+
except Exception:
|
92 |
+
tag = release
|
93 |
+
|
94 |
+
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
95 |
+
if name in assets:
|
96 |
+
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
97 |
+
safe_download(
|
98 |
+
file,
|
99 |
+
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
100 |
+
min_bytes=1E5,
|
101 |
+
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
102 |
+
|
103 |
+
return str(file)
|
utils/general.py
ADDED
@@ -0,0 +1,1135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import glob
|
3 |
+
import inspect
|
4 |
+
import logging
|
5 |
+
import logging.config
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import platform
|
9 |
+
import random
|
10 |
+
import re
|
11 |
+
import signal
|
12 |
+
import sys
|
13 |
+
import time
|
14 |
+
import urllib
|
15 |
+
from copy import deepcopy
|
16 |
+
from datetime import datetime
|
17 |
+
from itertools import repeat
|
18 |
+
from multiprocessing.pool import ThreadPool
|
19 |
+
from pathlib import Path
|
20 |
+
from subprocess import check_output
|
21 |
+
from tarfile import is_tarfile
|
22 |
+
from typing import Optional
|
23 |
+
from zipfile import ZipFile, is_zipfile
|
24 |
+
|
25 |
+
import cv2
|
26 |
+
import IPython
|
27 |
+
import numpy as np
|
28 |
+
import pandas as pd
|
29 |
+
import pkg_resources as pkg
|
30 |
+
import torch
|
31 |
+
import torchvision
|
32 |
+
import yaml
|
33 |
+
|
34 |
+
from utils import TryExcept, emojis
|
35 |
+
from utils.downloads import gsutil_getsize
|
36 |
+
from utils.metrics import box_iou, fitness
|
37 |
+
|
38 |
+
FILE = Path(__file__).resolve()
|
39 |
+
ROOT = FILE.parents[1] # YOLO root directory
|
40 |
+
RANK = int(os.getenv('RANK', -1))
|
41 |
+
|
42 |
+
# Settings
|
43 |
+
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
44 |
+
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory
|
45 |
+
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
46 |
+
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
47 |
+
TQDM_BAR_FORMAT = '{l_bar}{bar:10}| {n_fmt}/{total_fmt} {elapsed}' # tqdm bar format
|
48 |
+
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
49 |
+
|
50 |
+
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
51 |
+
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
52 |
+
pd.options.display.max_columns = 10
|
53 |
+
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
54 |
+
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
|
55 |
+
os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy)
|
56 |
+
|
57 |
+
|
58 |
+
def is_ascii(s=''):
|
59 |
+
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
|
60 |
+
s = str(s) # convert list, tuple, None, etc. to str
|
61 |
+
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
62 |
+
|
63 |
+
|
64 |
+
def is_chinese(s='人工智能'):
|
65 |
+
# Is string composed of any Chinese characters?
|
66 |
+
return bool(re.search('[\u4e00-\u9fff]', str(s)))
|
67 |
+
|
68 |
+
|
69 |
+
def is_colab():
|
70 |
+
# Is environment a Google Colab instance?
|
71 |
+
return 'google.colab' in sys.modules
|
72 |
+
|
73 |
+
|
74 |
+
def is_notebook():
|
75 |
+
# Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace
|
76 |
+
ipython_type = str(type(IPython.get_ipython()))
|
77 |
+
return 'colab' in ipython_type or 'zmqshell' in ipython_type
|
78 |
+
|
79 |
+
|
80 |
+
def is_kaggle():
|
81 |
+
# Is environment a Kaggle Notebook?
|
82 |
+
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
|
83 |
+
|
84 |
+
|
85 |
+
def is_docker() -> bool:
|
86 |
+
"""Check if the process runs inside a docker container."""
|
87 |
+
if Path("/.dockerenv").exists():
|
88 |
+
return True
|
89 |
+
try: # check if docker is in control groups
|
90 |
+
with open("/proc/self/cgroup") as file:
|
91 |
+
return any("docker" in line for line in file)
|
92 |
+
except OSError:
|
93 |
+
return False
|
94 |
+
|
95 |
+
|
96 |
+
def is_writeable(dir, test=False):
|
97 |
+
# Return True if directory has write permissions, test opening a file with write permissions if test=True
|
98 |
+
if not test:
|
99 |
+
return os.access(dir, os.W_OK) # possible issues on Windows
|
100 |
+
file = Path(dir) / 'tmp.txt'
|
101 |
+
try:
|
102 |
+
with open(file, 'w'): # open file with write permissions
|
103 |
+
pass
|
104 |
+
file.unlink() # remove file
|
105 |
+
return True
|
106 |
+
except OSError:
|
107 |
+
return False
|
108 |
+
|
109 |
+
|
110 |
+
LOGGING_NAME = "yolov5"
|
111 |
+
|
112 |
+
|
113 |
+
def set_logging(name=LOGGING_NAME, verbose=True):
|
114 |
+
# sets up logging for the given name
|
115 |
+
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
|
116 |
+
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
117 |
+
logging.config.dictConfig({
|
118 |
+
"version": 1,
|
119 |
+
"disable_existing_loggers": False,
|
120 |
+
"formatters": {
|
121 |
+
name: {
|
122 |
+
"format": "%(message)s"}},
|
123 |
+
"handlers": {
|
124 |
+
name: {
|
125 |
+
"class": "logging.StreamHandler",
|
126 |
+
"formatter": name,
|
127 |
+
"level": level,}},
|
128 |
+
"loggers": {
|
129 |
+
name: {
|
130 |
+
"level": level,
|
131 |
+
"handlers": [name],
|
132 |
+
"propagate": False,}}})
|
133 |
+
|
134 |
+
|
135 |
+
set_logging(LOGGING_NAME) # run before defining LOGGER
|
136 |
+
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
137 |
+
if platform.system() == 'Windows':
|
138 |
+
for fn in LOGGER.info, LOGGER.warning:
|
139 |
+
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
140 |
+
|
141 |
+
|
142 |
+
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
|
143 |
+
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
|
144 |
+
env = os.getenv(env_var)
|
145 |
+
if env:
|
146 |
+
path = Path(env) # use environment variable
|
147 |
+
else:
|
148 |
+
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
|
149 |
+
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
|
150 |
+
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
|
151 |
+
path.mkdir(exist_ok=True) # make if required
|
152 |
+
return path
|
153 |
+
|
154 |
+
|
155 |
+
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
|
156 |
+
|
157 |
+
|
158 |
+
class Profile(contextlib.ContextDecorator):
|
159 |
+
# YOLO Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
|
160 |
+
def __init__(self, t=0.0):
|
161 |
+
self.t = t
|
162 |
+
self.cuda = torch.cuda.is_available()
|
163 |
+
|
164 |
+
def __enter__(self):
|
165 |
+
self.start = self.time()
|
166 |
+
return self
|
167 |
+
|
168 |
+
def __exit__(self, type, value, traceback):
|
169 |
+
self.dt = self.time() - self.start # delta-time
|
170 |
+
self.t += self.dt # accumulate dt
|
171 |
+
|
172 |
+
def time(self):
|
173 |
+
if self.cuda:
|
174 |
+
torch.cuda.synchronize()
|
175 |
+
return time.time()
|
176 |
+
|
177 |
+
|
178 |
+
class Timeout(contextlib.ContextDecorator):
|
179 |
+
# YOLO Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
|
180 |
+
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
|
181 |
+
self.seconds = int(seconds)
|
182 |
+
self.timeout_message = timeout_msg
|
183 |
+
self.suppress = bool(suppress_timeout_errors)
|
184 |
+
|
185 |
+
def _timeout_handler(self, signum, frame):
|
186 |
+
raise TimeoutError(self.timeout_message)
|
187 |
+
|
188 |
+
def __enter__(self):
|
189 |
+
if platform.system() != 'Windows': # not supported on Windows
|
190 |
+
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
|
191 |
+
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
|
192 |
+
|
193 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
194 |
+
if platform.system() != 'Windows':
|
195 |
+
signal.alarm(0) # Cancel SIGALRM if it's scheduled
|
196 |
+
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
|
197 |
+
return True
|
198 |
+
|
199 |
+
|
200 |
+
class WorkingDirectory(contextlib.ContextDecorator):
|
201 |
+
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
202 |
+
def __init__(self, new_dir):
|
203 |
+
self.dir = new_dir # new dir
|
204 |
+
self.cwd = Path.cwd().resolve() # current dir
|
205 |
+
|
206 |
+
def __enter__(self):
|
207 |
+
os.chdir(self.dir)
|
208 |
+
|
209 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
210 |
+
os.chdir(self.cwd)
|
211 |
+
|
212 |
+
|
213 |
+
def methods(instance):
|
214 |
+
# Get class/instance methods
|
215 |
+
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
216 |
+
|
217 |
+
|
218 |
+
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
219 |
+
# Print function arguments (optional args dict)
|
220 |
+
x = inspect.currentframe().f_back # previous frame
|
221 |
+
file, _, func, _, _ = inspect.getframeinfo(x)
|
222 |
+
if args is None: # get args automatically
|
223 |
+
args, _, _, frm = inspect.getargvalues(x)
|
224 |
+
args = {k: v for k, v in frm.items() if k in args}
|
225 |
+
try:
|
226 |
+
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
|
227 |
+
except ValueError:
|
228 |
+
file = Path(file).stem
|
229 |
+
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
|
230 |
+
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
231 |
+
|
232 |
+
|
233 |
+
def init_seeds(seed=0, deterministic=False):
|
234 |
+
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
|
235 |
+
random.seed(seed)
|
236 |
+
np.random.seed(seed)
|
237 |
+
torch.manual_seed(seed)
|
238 |
+
torch.cuda.manual_seed(seed)
|
239 |
+
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
|
240 |
+
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
|
241 |
+
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
|
242 |
+
torch.use_deterministic_algorithms(True)
|
243 |
+
torch.backends.cudnn.deterministic = True
|
244 |
+
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
245 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
246 |
+
|
247 |
+
|
248 |
+
def intersect_dicts(da, db, exclude=()):
|
249 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
250 |
+
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
251 |
+
|
252 |
+
|
253 |
+
def get_default_args(func):
|
254 |
+
# Get func() default arguments
|
255 |
+
signature = inspect.signature(func)
|
256 |
+
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
|
257 |
+
|
258 |
+
|
259 |
+
def get_latest_run(search_dir='.'):
|
260 |
+
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
261 |
+
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
262 |
+
return max(last_list, key=os.path.getctime) if last_list else ''
|
263 |
+
|
264 |
+
|
265 |
+
def file_age(path=__file__):
|
266 |
+
# Return days since last file update
|
267 |
+
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
|
268 |
+
return dt.days # + dt.seconds / 86400 # fractional days
|
269 |
+
|
270 |
+
|
271 |
+
def file_date(path=__file__):
|
272 |
+
# Return human-readable file modification date, i.e. '2021-3-26'
|
273 |
+
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
|
274 |
+
return f'{t.year}-{t.month}-{t.day}'
|
275 |
+
|
276 |
+
|
277 |
+
def file_size(path):
|
278 |
+
# Return file/dir size (MB)
|
279 |
+
mb = 1 << 20 # bytes to MiB (1024 ** 2)
|
280 |
+
path = Path(path)
|
281 |
+
if path.is_file():
|
282 |
+
return path.stat().st_size / mb
|
283 |
+
elif path.is_dir():
|
284 |
+
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
|
285 |
+
else:
|
286 |
+
return 0.0
|
287 |
+
|
288 |
+
|
289 |
+
def check_online():
|
290 |
+
# Check internet connectivity
|
291 |
+
import socket
|
292 |
+
|
293 |
+
def run_once():
|
294 |
+
# Check once
|
295 |
+
try:
|
296 |
+
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
|
297 |
+
return True
|
298 |
+
except OSError:
|
299 |
+
return False
|
300 |
+
|
301 |
+
return run_once() or run_once() # check twice to increase robustness to intermittent connectivity issues
|
302 |
+
|
303 |
+
|
304 |
+
def git_describe(path=ROOT): # path must be a directory
|
305 |
+
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
306 |
+
try:
|
307 |
+
assert (Path(path) / '.git').is_dir()
|
308 |
+
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
309 |
+
except Exception:
|
310 |
+
return ''
|
311 |
+
|
312 |
+
|
313 |
+
@TryExcept()
|
314 |
+
@WorkingDirectory(ROOT)
|
315 |
+
def check_git_status(repo='WongKinYiu/yolov9', branch='main'):
|
316 |
+
# YOLO status check, recommend 'git pull' if code is out of date
|
317 |
+
url = f'https://github.com/{repo}'
|
318 |
+
msg = f', for updates see {url}'
|
319 |
+
s = colorstr('github: ') # string
|
320 |
+
assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
|
321 |
+
assert check_online(), s + 'skipping check (offline)' + msg
|
322 |
+
|
323 |
+
splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode())
|
324 |
+
matches = [repo in s for s in splits]
|
325 |
+
if any(matches):
|
326 |
+
remote = splits[matches.index(True) - 1]
|
327 |
+
else:
|
328 |
+
remote = 'ultralytics'
|
329 |
+
check_output(f'git remote add {remote} {url}', shell=True)
|
330 |
+
check_output(f'git fetch {remote}', shell=True, timeout=5) # git fetch
|
331 |
+
local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
332 |
+
n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True)) # commits behind
|
333 |
+
if n > 0:
|
334 |
+
pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}'
|
335 |
+
s += f"⚠️ YOLO is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update."
|
336 |
+
else:
|
337 |
+
s += f'up to date with {url} ✅'
|
338 |
+
LOGGER.info(s)
|
339 |
+
|
340 |
+
|
341 |
+
@WorkingDirectory(ROOT)
|
342 |
+
def check_git_info(path='.'):
|
343 |
+
# YOLO git info check, return {remote, branch, commit}
|
344 |
+
check_requirements('gitpython')
|
345 |
+
import git
|
346 |
+
try:
|
347 |
+
repo = git.Repo(path)
|
348 |
+
remote = repo.remotes.origin.url.replace('.git', '') # i.e. 'https://github.com/WongKinYiu/yolov9'
|
349 |
+
commit = repo.head.commit.hexsha # i.e. '3134699c73af83aac2a481435550b968d5792c0d'
|
350 |
+
try:
|
351 |
+
branch = repo.active_branch.name # i.e. 'main'
|
352 |
+
except TypeError: # not on any branch
|
353 |
+
branch = None # i.e. 'detached HEAD' state
|
354 |
+
return {'remote': remote, 'branch': branch, 'commit': commit}
|
355 |
+
except git.exc.InvalidGitRepositoryError: # path is not a git dir
|
356 |
+
return {'remote': None, 'branch': None, 'commit': None}
|
357 |
+
|
358 |
+
|
359 |
+
def check_python(minimum='3.7.0'):
|
360 |
+
# Check current python version vs. required python version
|
361 |
+
check_version(platform.python_version(), minimum, name='Python ', hard=True)
|
362 |
+
|
363 |
+
|
364 |
+
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
|
365 |
+
# Check version vs. required version
|
366 |
+
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
367 |
+
result = (current == minimum) if pinned else (current >= minimum) # bool
|
368 |
+
s = f'WARNING ⚠️ {name}{minimum} is required by YOLO, but {name}{current} is currently installed' # string
|
369 |
+
if hard:
|
370 |
+
assert result, emojis(s) # assert min requirements met
|
371 |
+
if verbose and not result:
|
372 |
+
LOGGER.warning(s)
|
373 |
+
return result
|
374 |
+
|
375 |
+
|
376 |
+
@TryExcept()
|
377 |
+
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''):
|
378 |
+
# Check installed dependencies meet YOLO requirements (pass *.txt file or list of packages or single package str)
|
379 |
+
prefix = colorstr('red', 'bold', 'requirements:')
|
380 |
+
check_python() # check python version
|
381 |
+
if isinstance(requirements, Path): # requirements.txt file
|
382 |
+
file = requirements.resolve()
|
383 |
+
assert file.exists(), f"{prefix} {file} not found, check failed."
|
384 |
+
with file.open() as f:
|
385 |
+
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
|
386 |
+
elif isinstance(requirements, str):
|
387 |
+
requirements = [requirements]
|
388 |
+
|
389 |
+
s = ''
|
390 |
+
n = 0
|
391 |
+
for r in requirements:
|
392 |
+
try:
|
393 |
+
pkg.require(r)
|
394 |
+
except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
|
395 |
+
s += f'"{r}" '
|
396 |
+
n += 1
|
397 |
+
|
398 |
+
if s and install and AUTOINSTALL: # check environment variable
|
399 |
+
LOGGER.info(f"{prefix} YOLO requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
|
400 |
+
try:
|
401 |
+
# assert check_online(), "AutoUpdate skipped (offline)"
|
402 |
+
LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
|
403 |
+
source = file if 'file' in locals() else requirements
|
404 |
+
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
405 |
+
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
406 |
+
LOGGER.info(s)
|
407 |
+
except Exception as e:
|
408 |
+
LOGGER.warning(f'{prefix} ❌ {e}')
|
409 |
+
|
410 |
+
|
411 |
+
def check_img_size(imgsz, s=32, floor=0):
|
412 |
+
# Verify image size is a multiple of stride s in each dimension
|
413 |
+
if isinstance(imgsz, int): # integer i.e. img_size=640
|
414 |
+
new_size = max(make_divisible(imgsz, int(s)), floor)
|
415 |
+
else: # list i.e. img_size=[640, 480]
|
416 |
+
imgsz = list(imgsz) # convert to list if tuple
|
417 |
+
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
418 |
+
if new_size != imgsz:
|
419 |
+
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
420 |
+
return new_size
|
421 |
+
|
422 |
+
|
423 |
+
def check_imshow(warn=False):
|
424 |
+
# Check if environment supports image displays
|
425 |
+
try:
|
426 |
+
assert not is_notebook()
|
427 |
+
assert not is_docker()
|
428 |
+
cv2.imshow('test', np.zeros((1, 1, 3)))
|
429 |
+
cv2.waitKey(1)
|
430 |
+
cv2.destroyAllWindows()
|
431 |
+
cv2.waitKey(1)
|
432 |
+
return True
|
433 |
+
except Exception as e:
|
434 |
+
if warn:
|
435 |
+
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
|
436 |
+
return False
|
437 |
+
|
438 |
+
|
439 |
+
def check_suffix(file='yolo.pt', suffix=('.pt',), msg=''):
|
440 |
+
# Check file(s) for acceptable suffix
|
441 |
+
if file and suffix:
|
442 |
+
if isinstance(suffix, str):
|
443 |
+
suffix = [suffix]
|
444 |
+
for f in file if isinstance(file, (list, tuple)) else [file]:
|
445 |
+
s = Path(f).suffix.lower() # file suffix
|
446 |
+
if len(s):
|
447 |
+
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
|
448 |
+
|
449 |
+
|
450 |
+
def check_yaml(file, suffix=('.yaml', '.yml')):
|
451 |
+
# Search/download YAML file (if necessary) and return path, checking suffix
|
452 |
+
return check_file(file, suffix)
|
453 |
+
|
454 |
+
|
455 |
+
def check_file(file, suffix=''):
|
456 |
+
# Search/download file (if necessary) and return path
|
457 |
+
check_suffix(file, suffix) # optional
|
458 |
+
file = str(file) # convert to str()
|
459 |
+
if os.path.isfile(file) or not file: # exists
|
460 |
+
return file
|
461 |
+
elif file.startswith(('http:/', 'https:/')): # download
|
462 |
+
url = file # warning: Pathlib turns :// -> :/
|
463 |
+
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
|
464 |
+
if os.path.isfile(file):
|
465 |
+
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
466 |
+
else:
|
467 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
468 |
+
torch.hub.download_url_to_file(url, file)
|
469 |
+
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
|
470 |
+
return file
|
471 |
+
elif file.startswith('clearml://'): # ClearML Dataset ID
|
472 |
+
assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
|
473 |
+
return file
|
474 |
+
else: # search
|
475 |
+
files = []
|
476 |
+
for d in 'data', 'models', 'utils': # search directories
|
477 |
+
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
|
478 |
+
assert len(files), f'File not found: {file}' # assert file was found
|
479 |
+
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
480 |
+
return files[0] # return file
|
481 |
+
|
482 |
+
|
483 |
+
def check_font(font=FONT, progress=False):
|
484 |
+
# Download font to CONFIG_DIR if necessary
|
485 |
+
font = Path(font)
|
486 |
+
file = CONFIG_DIR / font.name
|
487 |
+
if not font.exists() and not file.exists():
|
488 |
+
url = f'https://ultralytics.com/assets/{font.name}'
|
489 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
490 |
+
torch.hub.download_url_to_file(url, str(file), progress=progress)
|
491 |
+
|
492 |
+
|
493 |
+
def check_dataset(data, autodownload=True):
|
494 |
+
# Download, check and/or unzip dataset if not found locally
|
495 |
+
|
496 |
+
# Download (optional)
|
497 |
+
extract_dir = ''
|
498 |
+
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
|
499 |
+
download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
|
500 |
+
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
|
501 |
+
extract_dir, autodownload = data.parent, False
|
502 |
+
|
503 |
+
# Read yaml (optional)
|
504 |
+
if isinstance(data, (str, Path)):
|
505 |
+
data = yaml_load(data) # dictionary
|
506 |
+
|
507 |
+
# Checks
|
508 |
+
for k in 'train', 'val', 'names':
|
509 |
+
assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
|
510 |
+
if isinstance(data['names'], (list, tuple)): # old array format
|
511 |
+
data['names'] = dict(enumerate(data['names'])) # convert to dict
|
512 |
+
assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car'
|
513 |
+
data['nc'] = len(data['names'])
|
514 |
+
|
515 |
+
# Resolve paths
|
516 |
+
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
|
517 |
+
if not path.is_absolute():
|
518 |
+
path = (ROOT / path).resolve()
|
519 |
+
data['path'] = path # download scripts
|
520 |
+
for k in 'train', 'val', 'test':
|
521 |
+
if data.get(k): # prepend path
|
522 |
+
if isinstance(data[k], str):
|
523 |
+
x = (path / data[k]).resolve()
|
524 |
+
if not x.exists() and data[k].startswith('../'):
|
525 |
+
x = (path / data[k][3:]).resolve()
|
526 |
+
data[k] = str(x)
|
527 |
+
else:
|
528 |
+
data[k] = [str((path / x).resolve()) for x in data[k]]
|
529 |
+
|
530 |
+
# Parse yaml
|
531 |
+
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
|
532 |
+
if val:
|
533 |
+
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
534 |
+
if not all(x.exists() for x in val):
|
535 |
+
LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()])
|
536 |
+
if not s or not autodownload:
|
537 |
+
raise Exception('Dataset not found ❌')
|
538 |
+
t = time.time()
|
539 |
+
if s.startswith('http') and s.endswith('.zip'): # URL
|
540 |
+
f = Path(s).name # filename
|
541 |
+
LOGGER.info(f'Downloading {s} to {f}...')
|
542 |
+
torch.hub.download_url_to_file(s, f)
|
543 |
+
Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root
|
544 |
+
unzip_file(f, path=DATASETS_DIR) # unzip
|
545 |
+
Path(f).unlink() # remove zip
|
546 |
+
r = None # success
|
547 |
+
elif s.startswith('bash '): # bash script
|
548 |
+
LOGGER.info(f'Running {s} ...')
|
549 |
+
r = os.system(s)
|
550 |
+
else: # python script
|
551 |
+
r = exec(s, {'yaml': data}) # return None
|
552 |
+
dt = f'({round(time.time() - t, 1)}s)'
|
553 |
+
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
|
554 |
+
LOGGER.info(f"Dataset download {s}")
|
555 |
+
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
|
556 |
+
return data # dictionary
|
557 |
+
|
558 |
+
|
559 |
+
def check_amp(model):
|
560 |
+
# Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
|
561 |
+
from models.common import AutoShape, DetectMultiBackend
|
562 |
+
|
563 |
+
def amp_allclose(model, im):
|
564 |
+
# All close FP32 vs AMP results
|
565 |
+
m = AutoShape(model, verbose=False) # model
|
566 |
+
a = m(im).xywhn[0] # FP32 inference
|
567 |
+
m.amp = True
|
568 |
+
b = m(im).xywhn[0] # AMP inference
|
569 |
+
return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance
|
570 |
+
|
571 |
+
prefix = colorstr('AMP: ')
|
572 |
+
device = next(model.parameters()).device # get model device
|
573 |
+
if device.type in ('cpu', 'mps'):
|
574 |
+
return False # AMP only used on CUDA devices
|
575 |
+
f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check
|
576 |
+
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
|
577 |
+
try:
|
578 |
+
#assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolo.pt', device), im)
|
579 |
+
LOGGER.info(f'{prefix}checks passed ✅')
|
580 |
+
return True
|
581 |
+
except Exception:
|
582 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
|
583 |
+
LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')
|
584 |
+
return False
|
585 |
+
|
586 |
+
|
587 |
+
def yaml_load(file='data.yaml'):
|
588 |
+
# Single-line safe yaml loading
|
589 |
+
with open(file, errors='ignore') as f:
|
590 |
+
return yaml.safe_load(f)
|
591 |
+
|
592 |
+
|
593 |
+
def yaml_save(file='data.yaml', data={}):
|
594 |
+
# Single-line safe yaml saving
|
595 |
+
with open(file, 'w') as f:
|
596 |
+
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
597 |
+
|
598 |
+
|
599 |
+
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
|
600 |
+
# Unzip a *.zip file to path/, excluding files containing strings in exclude list
|
601 |
+
if path is None:
|
602 |
+
path = Path(file).parent # default path
|
603 |
+
with ZipFile(file) as zipObj:
|
604 |
+
for f in zipObj.namelist(): # list all archived filenames in the zip
|
605 |
+
if all(x not in f for x in exclude):
|
606 |
+
zipObj.extract(f, path=path)
|
607 |
+
|
608 |
+
|
609 |
+
def url2file(url):
|
610 |
+
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
|
611 |
+
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
|
612 |
+
return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
|
613 |
+
|
614 |
+
|
615 |
+
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
|
616 |
+
# Multithreaded file download and unzip function, used in data.yaml for autodownload
|
617 |
+
def download_one(url, dir):
|
618 |
+
# Download 1 file
|
619 |
+
success = True
|
620 |
+
if os.path.isfile(url):
|
621 |
+
f = Path(url) # filename
|
622 |
+
else: # does not exist
|
623 |
+
f = dir / Path(url).name
|
624 |
+
LOGGER.info(f'Downloading {url} to {f}...')
|
625 |
+
for i in range(retry + 1):
|
626 |
+
if curl:
|
627 |
+
s = 'sS' if threads > 1 else '' # silent
|
628 |
+
r = os.system(
|
629 |
+
f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
|
630 |
+
success = r == 0
|
631 |
+
else:
|
632 |
+
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
|
633 |
+
success = f.is_file()
|
634 |
+
if success:
|
635 |
+
break
|
636 |
+
elif i < retry:
|
637 |
+
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
|
638 |
+
else:
|
639 |
+
LOGGER.warning(f'❌ Failed to download {url}...')
|
640 |
+
|
641 |
+
if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)):
|
642 |
+
LOGGER.info(f'Unzipping {f}...')
|
643 |
+
if is_zipfile(f):
|
644 |
+
unzip_file(f, dir) # unzip
|
645 |
+
elif is_tarfile(f):
|
646 |
+
os.system(f'tar xf {f} --directory {f.parent}') # unzip
|
647 |
+
elif f.suffix == '.gz':
|
648 |
+
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
|
649 |
+
if delete:
|
650 |
+
f.unlink() # remove zip
|
651 |
+
|
652 |
+
dir = Path(dir)
|
653 |
+
dir.mkdir(parents=True, exist_ok=True) # make directory
|
654 |
+
if threads > 1:
|
655 |
+
pool = ThreadPool(threads)
|
656 |
+
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded
|
657 |
+
pool.close()
|
658 |
+
pool.join()
|
659 |
+
else:
|
660 |
+
for u in [url] if isinstance(url, (str, Path)) else url:
|
661 |
+
download_one(u, dir)
|
662 |
+
|
663 |
+
|
664 |
+
def make_divisible(x, divisor):
|
665 |
+
# Returns nearest x divisible by divisor
|
666 |
+
if isinstance(divisor, torch.Tensor):
|
667 |
+
divisor = int(divisor.max()) # to int
|
668 |
+
return math.ceil(x / divisor) * divisor
|
669 |
+
|
670 |
+
|
671 |
+
def clean_str(s):
|
672 |
+
# Cleans a string by replacing special characters with underscore _
|
673 |
+
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
674 |
+
|
675 |
+
|
676 |
+
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
677 |
+
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
678 |
+
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
679 |
+
|
680 |
+
|
681 |
+
def one_flat_cycle(y1=0.0, y2=1.0, steps=100):
|
682 |
+
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
683 |
+
#return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
684 |
+
return lambda x: ((1 - math.cos((x - (steps // 2)) * math.pi / (steps // 2))) / 2) * (y2 - y1) + y1 if (x > (steps // 2)) else y1
|
685 |
+
|
686 |
+
|
687 |
+
def colorstr(*input):
|
688 |
+
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
689 |
+
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
690 |
+
colors = {
|
691 |
+
'black': '\033[30m', # basic colors
|
692 |
+
'red': '\033[31m',
|
693 |
+
'green': '\033[32m',
|
694 |
+
'yellow': '\033[33m',
|
695 |
+
'blue': '\033[34m',
|
696 |
+
'magenta': '\033[35m',
|
697 |
+
'cyan': '\033[36m',
|
698 |
+
'white': '\033[37m',
|
699 |
+
'bright_black': '\033[90m', # bright colors
|
700 |
+
'bright_red': '\033[91m',
|
701 |
+
'bright_green': '\033[92m',
|
702 |
+
'bright_yellow': '\033[93m',
|
703 |
+
'bright_blue': '\033[94m',
|
704 |
+
'bright_magenta': '\033[95m',
|
705 |
+
'bright_cyan': '\033[96m',
|
706 |
+
'bright_white': '\033[97m',
|
707 |
+
'end': '\033[0m', # misc
|
708 |
+
'bold': '\033[1m',
|
709 |
+
'underline': '\033[4m'}
|
710 |
+
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
711 |
+
|
712 |
+
|
713 |
+
def labels_to_class_weights(labels, nc=80):
|
714 |
+
# Get class weights (inverse frequency) from training labels
|
715 |
+
if labels[0] is None: # no labels loaded
|
716 |
+
return torch.Tensor()
|
717 |
+
|
718 |
+
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
719 |
+
classes = labels[:, 0].astype(int) # labels = [class xywh]
|
720 |
+
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
721 |
+
|
722 |
+
# Prepend gridpoint count (for uCE training)
|
723 |
+
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
724 |
+
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
725 |
+
|
726 |
+
weights[weights == 0] = 1 # replace empty bins with 1
|
727 |
+
weights = 1 / weights # number of targets per class
|
728 |
+
weights /= weights.sum() # normalize
|
729 |
+
return torch.from_numpy(weights).float()
|
730 |
+
|
731 |
+
|
732 |
+
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
733 |
+
# Produces image weights based on class_weights and image contents
|
734 |
+
# Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample
|
735 |
+
class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
|
736 |
+
return (class_weights.reshape(1, nc) * class_counts).sum(1)
|
737 |
+
|
738 |
+
|
739 |
+
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
740 |
+
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
741 |
+
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
742 |
+
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
743 |
+
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
744 |
+
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
745 |
+
return [
|
746 |
+
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
747 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
748 |
+
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
749 |
+
|
750 |
+
|
751 |
+
def xyxy2xywh(x):
|
752 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
753 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
754 |
+
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
|
755 |
+
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
|
756 |
+
y[..., 2] = x[..., 2] - x[..., 0] # width
|
757 |
+
y[..., 3] = x[..., 3] - x[..., 1] # height
|
758 |
+
return y
|
759 |
+
|
760 |
+
|
761 |
+
def xywh2xyxy(x):
|
762 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
763 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
764 |
+
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
|
765 |
+
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
|
766 |
+
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
|
767 |
+
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
|
768 |
+
return y
|
769 |
+
|
770 |
+
|
771 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
772 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
773 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
774 |
+
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
775 |
+
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
776 |
+
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
777 |
+
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
778 |
+
return y
|
779 |
+
|
780 |
+
|
781 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
782 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
783 |
+
if clip:
|
784 |
+
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
785 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
786 |
+
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
787 |
+
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
788 |
+
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
789 |
+
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
790 |
+
return y
|
791 |
+
|
792 |
+
|
793 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
794 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
795 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
796 |
+
y[..., 0] = w * x[..., 0] + padw # top left x
|
797 |
+
y[..., 1] = h * x[..., 1] + padh # top left y
|
798 |
+
return y
|
799 |
+
|
800 |
+
|
801 |
+
def segment2box(segment, width=640, height=640):
|
802 |
+
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
803 |
+
x, y = segment.T # segment xy
|
804 |
+
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
805 |
+
x, y, = x[inside], y[inside]
|
806 |
+
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
807 |
+
|
808 |
+
|
809 |
+
def segments2boxes(segments):
|
810 |
+
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
811 |
+
boxes = []
|
812 |
+
for s in segments:
|
813 |
+
x, y = s.T # segment xy
|
814 |
+
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
815 |
+
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
816 |
+
|
817 |
+
|
818 |
+
def resample_segments(segments, n=1000):
|
819 |
+
# Up-sample an (n,2) segment
|
820 |
+
for i, s in enumerate(segments):
|
821 |
+
s = np.concatenate((s, s[0:1, :]), axis=0)
|
822 |
+
x = np.linspace(0, len(s) - 1, n)
|
823 |
+
xp = np.arange(len(s))
|
824 |
+
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
825 |
+
return segments
|
826 |
+
|
827 |
+
|
828 |
+
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
829 |
+
# Rescale boxes (xyxy) from img1_shape to img0_shape
|
830 |
+
if ratio_pad is None: # calculate from img0_shape
|
831 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
832 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
833 |
+
else:
|
834 |
+
gain = ratio_pad[0][0]
|
835 |
+
pad = ratio_pad[1]
|
836 |
+
|
837 |
+
boxes[:, [0, 2]] -= pad[0] # x padding
|
838 |
+
boxes[:, [1, 3]] -= pad[1] # y padding
|
839 |
+
boxes[:, :4] /= gain
|
840 |
+
clip_boxes(boxes, img0_shape)
|
841 |
+
return boxes
|
842 |
+
|
843 |
+
|
844 |
+
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
|
845 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
846 |
+
if ratio_pad is None: # calculate from img0_shape
|
847 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
848 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
849 |
+
else:
|
850 |
+
gain = ratio_pad[0][0]
|
851 |
+
pad = ratio_pad[1]
|
852 |
+
|
853 |
+
segments[:, 0] -= pad[0] # x padding
|
854 |
+
segments[:, 1] -= pad[1] # y padding
|
855 |
+
segments /= gain
|
856 |
+
clip_segments(segments, img0_shape)
|
857 |
+
if normalize:
|
858 |
+
segments[:, 0] /= img0_shape[1] # width
|
859 |
+
segments[:, 1] /= img0_shape[0] # height
|
860 |
+
return segments
|
861 |
+
|
862 |
+
|
863 |
+
def clip_boxes(boxes, shape):
|
864 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
865 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
866 |
+
boxes[:, 0].clamp_(0, shape[1]) # x1
|
867 |
+
boxes[:, 1].clamp_(0, shape[0]) # y1
|
868 |
+
boxes[:, 2].clamp_(0, shape[1]) # x2
|
869 |
+
boxes[:, 3].clamp_(0, shape[0]) # y2
|
870 |
+
else: # np.array (faster grouped)
|
871 |
+
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
872 |
+
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
873 |
+
|
874 |
+
|
875 |
+
def clip_segments(segments, shape):
|
876 |
+
# Clip segments (xy1,xy2,...) to image shape (height, width)
|
877 |
+
if isinstance(segments, torch.Tensor): # faster individually
|
878 |
+
segments[:, 0].clamp_(0, shape[1]) # x
|
879 |
+
segments[:, 1].clamp_(0, shape[0]) # y
|
880 |
+
else: # np.array (faster grouped)
|
881 |
+
segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x
|
882 |
+
segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y
|
883 |
+
|
884 |
+
|
885 |
+
def non_max_suppression(
|
886 |
+
prediction,
|
887 |
+
conf_thres=0.25,
|
888 |
+
iou_thres=0.45,
|
889 |
+
classes=None,
|
890 |
+
agnostic=False,
|
891 |
+
multi_label=False,
|
892 |
+
labels=(),
|
893 |
+
max_det=300,
|
894 |
+
nm=0, # number of masks
|
895 |
+
):
|
896 |
+
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
|
897 |
+
|
898 |
+
Returns:
|
899 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
900 |
+
"""
|
901 |
+
|
902 |
+
if isinstance(prediction, (list, tuple)): # YOLO model in validation model, output = (inference_out, loss_out)
|
903 |
+
prediction = prediction[0] # select only inference output
|
904 |
+
|
905 |
+
device = prediction.device
|
906 |
+
mps = 'mps' in device.type # Apple MPS
|
907 |
+
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
|
908 |
+
prediction = prediction.cpu()
|
909 |
+
bs = prediction.shape[0] # batch size
|
910 |
+
nc = prediction.shape[1] - nm - 4 # number of classes
|
911 |
+
mi = 4 + nc # mask start index
|
912 |
+
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
|
913 |
+
|
914 |
+
# Checks
|
915 |
+
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
916 |
+
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
917 |
+
|
918 |
+
# Settings
|
919 |
+
# min_wh = 2 # (pixels) minimum box width and height
|
920 |
+
max_wh = 7680 # (pixels) maximum box width and height
|
921 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
922 |
+
time_limit = 2.5 + 0.05 * bs # seconds to quit after
|
923 |
+
redundant = True # require redundant detections
|
924 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
925 |
+
merge = False # use merge-NMS
|
926 |
+
|
927 |
+
t = time.time()
|
928 |
+
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
|
929 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
930 |
+
# Apply constraints
|
931 |
+
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
932 |
+
x = x.T[xc[xi]] # confidence
|
933 |
+
|
934 |
+
# Cat apriori labels if autolabelling
|
935 |
+
if labels and len(labels[xi]):
|
936 |
+
lb = labels[xi]
|
937 |
+
v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
|
938 |
+
v[:, :4] = lb[:, 1:5] # box
|
939 |
+
v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
|
940 |
+
x = torch.cat((x, v), 0)
|
941 |
+
|
942 |
+
# If none remain process next image
|
943 |
+
if not x.shape[0]:
|
944 |
+
continue
|
945 |
+
|
946 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
947 |
+
box, cls, mask = x.split((4, nc, nm), 1)
|
948 |
+
box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2)
|
949 |
+
if multi_label:
|
950 |
+
i, j = (cls > conf_thres).nonzero(as_tuple=False).T
|
951 |
+
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
|
952 |
+
else: # best class only
|
953 |
+
conf, j = cls.max(1, keepdim=True)
|
954 |
+
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
|
955 |
+
|
956 |
+
# Filter by class
|
957 |
+
if classes is not None:
|
958 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
959 |
+
|
960 |
+
# Apply finite constraint
|
961 |
+
# if not torch.isfinite(x).all():
|
962 |
+
# x = x[torch.isfinite(x).all(1)]
|
963 |
+
|
964 |
+
# Check shape
|
965 |
+
n = x.shape[0] # number of boxes
|
966 |
+
if not n: # no boxes
|
967 |
+
continue
|
968 |
+
elif n > max_nms: # excess boxes
|
969 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
970 |
+
else:
|
971 |
+
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
|
972 |
+
|
973 |
+
# Batched NMS
|
974 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
975 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
976 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
977 |
+
if i.shape[0] > max_det: # limit detections
|
978 |
+
i = i[:max_det]
|
979 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
980 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
981 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
982 |
+
weights = iou * scores[None] # box weights
|
983 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
984 |
+
if redundant:
|
985 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
986 |
+
|
987 |
+
output[xi] = x[i]
|
988 |
+
if mps:
|
989 |
+
output[xi] = output[xi].to(device)
|
990 |
+
if (time.time() - t) > time_limit:
|
991 |
+
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
|
992 |
+
break # time limit exceeded
|
993 |
+
|
994 |
+
return output
|
995 |
+
|
996 |
+
|
997 |
+
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
998 |
+
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
999 |
+
x = torch.load(f, map_location=torch.device('cpu'))
|
1000 |
+
if x.get('ema'):
|
1001 |
+
x['model'] = x['ema'] # replace model with ema
|
1002 |
+
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
|
1003 |
+
x[k] = None
|
1004 |
+
x['epoch'] = -1
|
1005 |
+
x['model'].half() # to FP16
|
1006 |
+
for p in x['model'].parameters():
|
1007 |
+
p.requires_grad = False
|
1008 |
+
torch.save(x, s or f)
|
1009 |
+
mb = os.path.getsize(s or f) / 1E6 # filesize
|
1010 |
+
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
1011 |
+
|
1012 |
+
|
1013 |
+
def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
|
1014 |
+
evolve_csv = save_dir / 'evolve.csv'
|
1015 |
+
evolve_yaml = save_dir / 'hyp_evolve.yaml'
|
1016 |
+
keys = tuple(keys) + tuple(hyp.keys()) # [results + hyps]
|
1017 |
+
keys = tuple(x.strip() for x in keys)
|
1018 |
+
vals = results + tuple(hyp.values())
|
1019 |
+
n = len(keys)
|
1020 |
+
|
1021 |
+
# Download (optional)
|
1022 |
+
if bucket:
|
1023 |
+
url = f'gs://{bucket}/evolve.csv'
|
1024 |
+
if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
|
1025 |
+
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
|
1026 |
+
|
1027 |
+
# Log to evolve.csv
|
1028 |
+
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
|
1029 |
+
with open(evolve_csv, 'a') as f:
|
1030 |
+
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
|
1031 |
+
|
1032 |
+
# Save yaml
|
1033 |
+
with open(evolve_yaml, 'w') as f:
|
1034 |
+
data = pd.read_csv(evolve_csv)
|
1035 |
+
data = data.rename(columns=lambda x: x.strip()) # strip keys
|
1036 |
+
i = np.argmax(fitness(data.values[:, :4])) #
|
1037 |
+
generations = len(data)
|
1038 |
+
f.write('# YOLO Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
|
1039 |
+
f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
|
1040 |
+
'\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
|
1041 |
+
yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
|
1042 |
+
|
1043 |
+
# Print to screen
|
1044 |
+
LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
|
1045 |
+
', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
|
1046 |
+
for x in vals) + '\n\n')
|
1047 |
+
|
1048 |
+
if bucket:
|
1049 |
+
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
|
1050 |
+
|
1051 |
+
|
1052 |
+
def apply_classifier(x, model, img, im0):
|
1053 |
+
# Apply a second stage classifier to YOLO outputs
|
1054 |
+
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
|
1055 |
+
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
1056 |
+
for i, d in enumerate(x): # per image
|
1057 |
+
if d is not None and len(d):
|
1058 |
+
d = d.clone()
|
1059 |
+
|
1060 |
+
# Reshape and pad cutouts
|
1061 |
+
b = xyxy2xywh(d[:, :4]) # boxes
|
1062 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
1063 |
+
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
1064 |
+
d[:, :4] = xywh2xyxy(b).long()
|
1065 |
+
|
1066 |
+
# Rescale boxes from img_size to im0 size
|
1067 |
+
scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)
|
1068 |
+
|
1069 |
+
# Classes
|
1070 |
+
pred_cls1 = d[:, 5].long()
|
1071 |
+
ims = []
|
1072 |
+
for a in d:
|
1073 |
+
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
1074 |
+
im = cv2.resize(cutout, (224, 224)) # BGR
|
1075 |
+
|
1076 |
+
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
1077 |
+
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
1078 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
1079 |
+
ims.append(im)
|
1080 |
+
|
1081 |
+
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
1082 |
+
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
1083 |
+
|
1084 |
+
return x
|
1085 |
+
|
1086 |
+
|
1087 |
+
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
1088 |
+
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
1089 |
+
path = Path(path) # os-agnostic
|
1090 |
+
if path.exists() and not exist_ok:
|
1091 |
+
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
|
1092 |
+
|
1093 |
+
# Method 1
|
1094 |
+
for n in range(2, 9999):
|
1095 |
+
p = f'{path}{sep}{n}{suffix}' # increment path
|
1096 |
+
if not os.path.exists(p): #
|
1097 |
+
break
|
1098 |
+
path = Path(p)
|
1099 |
+
|
1100 |
+
# Method 2 (deprecated)
|
1101 |
+
# dirs = glob.glob(f"{path}{sep}*") # similar paths
|
1102 |
+
# matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
|
1103 |
+
# i = [int(m.groups()[0]) for m in matches if m] # indices
|
1104 |
+
# n = max(i) + 1 if i else 2 # increment number
|
1105 |
+
# path = Path(f"{path}{sep}{n}{suffix}") # increment path
|
1106 |
+
|
1107 |
+
if mkdir:
|
1108 |
+
path.mkdir(parents=True, exist_ok=True) # make directory
|
1109 |
+
|
1110 |
+
return path
|
1111 |
+
|
1112 |
+
|
1113 |
+
# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
|
1114 |
+
imshow_ = cv2.imshow # copy to avoid recursion errors
|
1115 |
+
|
1116 |
+
|
1117 |
+
def imread(path, flags=cv2.IMREAD_COLOR):
|
1118 |
+
return cv2.imdecode(np.fromfile(path, np.uint8), flags)
|
1119 |
+
|
1120 |
+
|
1121 |
+
def imwrite(path, im):
|
1122 |
+
try:
|
1123 |
+
cv2.imencode(Path(path).suffix, im)[1].tofile(path)
|
1124 |
+
return True
|
1125 |
+
except Exception:
|
1126 |
+
return False
|
1127 |
+
|
1128 |
+
|
1129 |
+
def imshow(path, im):
|
1130 |
+
imshow_(path.encode('unicode_escape').decode(), im)
|
1131 |
+
|
1132 |
+
|
1133 |
+
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
|
1134 |
+
|
1135 |
+
# Variables ------------------------------------------------------------------------------------------------------------
|
utils/lion.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch implementation of the Lion optimizer."""
|
2 |
+
import torch
|
3 |
+
from torch.optim.optimizer import Optimizer
|
4 |
+
|
5 |
+
|
6 |
+
class Lion(Optimizer):
|
7 |
+
r"""Implements Lion algorithm."""
|
8 |
+
|
9 |
+
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
|
10 |
+
"""Initialize the hyperparameters.
|
11 |
+
Args:
|
12 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
13 |
+
parameter groups
|
14 |
+
lr (float, optional): learning rate (default: 1e-4)
|
15 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
16 |
+
running averages of gradient and its square (default: (0.9, 0.99))
|
17 |
+
weight_decay (float, optional): weight decay coefficient (default: 0)
|
18 |
+
"""
|
19 |
+
|
20 |
+
if not 0.0 <= lr:
|
21 |
+
raise ValueError('Invalid learning rate: {}'.format(lr))
|
22 |
+
if not 0.0 <= betas[0] < 1.0:
|
23 |
+
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
|
24 |
+
if not 0.0 <= betas[1] < 1.0:
|
25 |
+
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
|
26 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
27 |
+
super().__init__(params, defaults)
|
28 |
+
|
29 |
+
@torch.no_grad()
|
30 |
+
def step(self, closure=None):
|
31 |
+
"""Performs a single optimization step.
|
32 |
+
Args:
|
33 |
+
closure (callable, optional): A closure that reevaluates the model
|
34 |
+
and returns the loss.
|
35 |
+
Returns:
|
36 |
+
the loss.
|
37 |
+
"""
|
38 |
+
loss = None
|
39 |
+
if closure is not None:
|
40 |
+
with torch.enable_grad():
|
41 |
+
loss = closure()
|
42 |
+
|
43 |
+
for group in self.param_groups:
|
44 |
+
for p in group['params']:
|
45 |
+
if p.grad is None:
|
46 |
+
continue
|
47 |
+
|
48 |
+
# Perform stepweight decay
|
49 |
+
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
50 |
+
|
51 |
+
grad = p.grad
|
52 |
+
state = self.state[p]
|
53 |
+
# State initialization
|
54 |
+
if len(state) == 0:
|
55 |
+
# Exponential moving average of gradient values
|
56 |
+
state['exp_avg'] = torch.zeros_like(p)
|
57 |
+
|
58 |
+
exp_avg = state['exp_avg']
|
59 |
+
beta1, beta2 = group['betas']
|
60 |
+
|
61 |
+
# Weight update
|
62 |
+
update = exp_avg * beta1 + grad * (1 - beta1)
|
63 |
+
p.add_(torch.sign(update), alpha=-group['lr'])
|
64 |
+
# Decay the momentum running average coefficient
|
65 |
+
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
|
66 |
+
|
67 |
+
return loss
|
utils/loggers/__init__.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import pkg_resources as pkg
|
6 |
+
import torch
|
7 |
+
from torch.utils.tensorboard import SummaryWriter
|
8 |
+
|
9 |
+
from utils.general import LOGGER, colorstr, cv2
|
10 |
+
from utils.loggers.clearml.clearml_utils import ClearmlLogger
|
11 |
+
from utils.loggers.wandb.wandb_utils import WandbLogger
|
12 |
+
from utils.plots import plot_images, plot_labels, plot_results
|
13 |
+
from utils.torch_utils import de_parallel
|
14 |
+
|
15 |
+
LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet') # *.csv, TensorBoard, Weights & Biases, ClearML
|
16 |
+
RANK = int(os.getenv('RANK', -1))
|
17 |
+
|
18 |
+
try:
|
19 |
+
import wandb
|
20 |
+
|
21 |
+
assert hasattr(wandb, '__version__') # verify package import not local dir
|
22 |
+
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
|
23 |
+
try:
|
24 |
+
wandb_login_success = wandb.login(timeout=30)
|
25 |
+
except wandb.errors.UsageError: # known non-TTY terminal issue
|
26 |
+
wandb_login_success = False
|
27 |
+
if not wandb_login_success:
|
28 |
+
wandb = None
|
29 |
+
except (ImportError, AssertionError):
|
30 |
+
wandb = None
|
31 |
+
|
32 |
+
try:
|
33 |
+
import clearml
|
34 |
+
|
35 |
+
assert hasattr(clearml, '__version__') # verify package import not local dir
|
36 |
+
except (ImportError, AssertionError):
|
37 |
+
clearml = None
|
38 |
+
|
39 |
+
try:
|
40 |
+
if RANK not in [0, -1]:
|
41 |
+
comet_ml = None
|
42 |
+
else:
|
43 |
+
import comet_ml
|
44 |
+
|
45 |
+
assert hasattr(comet_ml, '__version__') # verify package import not local dir
|
46 |
+
from utils.loggers.comet import CometLogger
|
47 |
+
|
48 |
+
except (ModuleNotFoundError, ImportError, AssertionError):
|
49 |
+
comet_ml = None
|
50 |
+
|
51 |
+
|
52 |
+
class Loggers():
|
53 |
+
# YOLO Loggers class
|
54 |
+
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
55 |
+
self.save_dir = save_dir
|
56 |
+
self.weights = weights
|
57 |
+
self.opt = opt
|
58 |
+
self.hyp = hyp
|
59 |
+
self.plots = not opt.noplots # plot results
|
60 |
+
self.logger = logger # for printing results to console
|
61 |
+
self.include = include
|
62 |
+
self.keys = [
|
63 |
+
'train/box_loss',
|
64 |
+
'train/cls_loss',
|
65 |
+
'train/dfl_loss', # train loss
|
66 |
+
'metrics/precision',
|
67 |
+
'metrics/recall',
|
68 |
+
'metrics/mAP_0.5',
|
69 |
+
'metrics/mAP_0.5:0.95', # metrics
|
70 |
+
'val/box_loss',
|
71 |
+
'val/cls_loss',
|
72 |
+
'val/dfl_loss', # val loss
|
73 |
+
'x/lr0',
|
74 |
+
'x/lr1',
|
75 |
+
'x/lr2'] # params
|
76 |
+
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
|
77 |
+
for k in LOGGERS:
|
78 |
+
setattr(self, k, None) # init empty logger dictionary
|
79 |
+
self.csv = True # always log to csv
|
80 |
+
|
81 |
+
# Messages
|
82 |
+
# if not wandb:
|
83 |
+
# prefix = colorstr('Weights & Biases: ')
|
84 |
+
# s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLO 🚀 runs in Weights & Biases"
|
85 |
+
# self.logger.info(s)
|
86 |
+
if not clearml:
|
87 |
+
prefix = colorstr('ClearML: ')
|
88 |
+
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLO 🚀 in ClearML"
|
89 |
+
self.logger.info(s)
|
90 |
+
if not comet_ml:
|
91 |
+
prefix = colorstr('Comet: ')
|
92 |
+
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLO 🚀 runs in Comet"
|
93 |
+
self.logger.info(s)
|
94 |
+
# TensorBoard
|
95 |
+
s = self.save_dir
|
96 |
+
if 'tb' in self.include and not self.opt.evolve:
|
97 |
+
prefix = colorstr('TensorBoard: ')
|
98 |
+
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
99 |
+
self.tb = SummaryWriter(str(s))
|
100 |
+
|
101 |
+
# W&B
|
102 |
+
if wandb and 'wandb' in self.include:
|
103 |
+
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
|
104 |
+
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
|
105 |
+
self.opt.hyp = self.hyp # add hyperparameters
|
106 |
+
self.wandb = WandbLogger(self.opt, run_id)
|
107 |
+
# temp warn. because nested artifacts not supported after 0.12.10
|
108 |
+
# if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
|
109 |
+
# s = "YOLO temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
|
110 |
+
# self.logger.warning(s)
|
111 |
+
else:
|
112 |
+
self.wandb = None
|
113 |
+
|
114 |
+
# ClearML
|
115 |
+
if clearml and 'clearml' in self.include:
|
116 |
+
self.clearml = ClearmlLogger(self.opt, self.hyp)
|
117 |
+
else:
|
118 |
+
self.clearml = None
|
119 |
+
|
120 |
+
# Comet
|
121 |
+
if comet_ml and 'comet' in self.include:
|
122 |
+
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
|
123 |
+
run_id = self.opt.resume.split("/")[-1]
|
124 |
+
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
|
125 |
+
|
126 |
+
else:
|
127 |
+
self.comet_logger = CometLogger(self.opt, self.hyp)
|
128 |
+
|
129 |
+
else:
|
130 |
+
self.comet_logger = None
|
131 |
+
|
132 |
+
@property
|
133 |
+
def remote_dataset(self):
|
134 |
+
# Get data_dict if custom dataset artifact link is provided
|
135 |
+
data_dict = None
|
136 |
+
if self.clearml:
|
137 |
+
data_dict = self.clearml.data_dict
|
138 |
+
if self.wandb:
|
139 |
+
data_dict = self.wandb.data_dict
|
140 |
+
if self.comet_logger:
|
141 |
+
data_dict = self.comet_logger.data_dict
|
142 |
+
|
143 |
+
return data_dict
|
144 |
+
|
145 |
+
def on_train_start(self):
|
146 |
+
if self.comet_logger:
|
147 |
+
self.comet_logger.on_train_start()
|
148 |
+
|
149 |
+
def on_pretrain_routine_start(self):
|
150 |
+
if self.comet_logger:
|
151 |
+
self.comet_logger.on_pretrain_routine_start()
|
152 |
+
|
153 |
+
def on_pretrain_routine_end(self, labels, names):
|
154 |
+
# Callback runs on pre-train routine end
|
155 |
+
if self.plots:
|
156 |
+
plot_labels(labels, names, self.save_dir)
|
157 |
+
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
158 |
+
if self.wandb:
|
159 |
+
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
160 |
+
# if self.clearml:
|
161 |
+
# pass # ClearML saves these images automatically using hooks
|
162 |
+
if self.comet_logger:
|
163 |
+
self.comet_logger.on_pretrain_routine_end(paths)
|
164 |
+
|
165 |
+
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
|
166 |
+
log_dict = dict(zip(self.keys[0:3], vals))
|
167 |
+
# Callback runs on train batch end
|
168 |
+
# ni: number integrated batches (since train start)
|
169 |
+
if self.plots:
|
170 |
+
if ni < 3:
|
171 |
+
f = self.save_dir / f'train_batch{ni}.jpg' # filename
|
172 |
+
plot_images(imgs, targets, paths, f)
|
173 |
+
if ni == 0 and self.tb and not self.opt.sync_bn:
|
174 |
+
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
|
175 |
+
if ni == 10 and (self.wandb or self.clearml):
|
176 |
+
files = sorted(self.save_dir.glob('train*.jpg'))
|
177 |
+
if self.wandb:
|
178 |
+
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
179 |
+
if self.clearml:
|
180 |
+
self.clearml.log_debug_samples(files, title='Mosaics')
|
181 |
+
|
182 |
+
if self.comet_logger:
|
183 |
+
self.comet_logger.on_train_batch_end(log_dict, step=ni)
|
184 |
+
|
185 |
+
def on_train_epoch_end(self, epoch):
|
186 |
+
# Callback runs on train epoch end
|
187 |
+
if self.wandb:
|
188 |
+
self.wandb.current_epoch = epoch + 1
|
189 |
+
|
190 |
+
if self.comet_logger:
|
191 |
+
self.comet_logger.on_train_epoch_end(epoch)
|
192 |
+
|
193 |
+
def on_val_start(self):
|
194 |
+
if self.comet_logger:
|
195 |
+
self.comet_logger.on_val_start()
|
196 |
+
|
197 |
+
def on_val_image_end(self, pred, predn, path, names, im):
|
198 |
+
# Callback runs on val image end
|
199 |
+
if self.wandb:
|
200 |
+
self.wandb.val_one_image(pred, predn, path, names, im)
|
201 |
+
if self.clearml:
|
202 |
+
self.clearml.log_image_with_boxes(path, pred, names, im)
|
203 |
+
|
204 |
+
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
|
205 |
+
if self.comet_logger:
|
206 |
+
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
|
207 |
+
|
208 |
+
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
209 |
+
# Callback runs on val end
|
210 |
+
if self.wandb or self.clearml:
|
211 |
+
files = sorted(self.save_dir.glob('val*.jpg'))
|
212 |
+
if self.wandb:
|
213 |
+
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
214 |
+
if self.clearml:
|
215 |
+
self.clearml.log_debug_samples(files, title='Validation')
|
216 |
+
|
217 |
+
if self.comet_logger:
|
218 |
+
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
219 |
+
|
220 |
+
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
221 |
+
# Callback runs at the end of each fit (train+val) epoch
|
222 |
+
x = dict(zip(self.keys, vals))
|
223 |
+
if self.csv:
|
224 |
+
file = self.save_dir / 'results.csv'
|
225 |
+
n = len(x) + 1 # number of cols
|
226 |
+
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
|
227 |
+
with open(file, 'a') as f:
|
228 |
+
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
229 |
+
|
230 |
+
if self.tb:
|
231 |
+
for k, v in x.items():
|
232 |
+
self.tb.add_scalar(k, v, epoch)
|
233 |
+
elif self.clearml: # log to ClearML if TensorBoard not used
|
234 |
+
for k, v in x.items():
|
235 |
+
title, series = k.split('/')
|
236 |
+
self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
|
237 |
+
|
238 |
+
if self.wandb:
|
239 |
+
if best_fitness == fi:
|
240 |
+
best_results = [epoch] + vals[3:7]
|
241 |
+
for i, name in enumerate(self.best_keys):
|
242 |
+
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
|
243 |
+
self.wandb.log(x)
|
244 |
+
self.wandb.end_epoch(best_result=best_fitness == fi)
|
245 |
+
|
246 |
+
if self.clearml:
|
247 |
+
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
|
248 |
+
self.clearml.current_epoch += 1
|
249 |
+
|
250 |
+
if self.comet_logger:
|
251 |
+
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
|
252 |
+
|
253 |
+
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
254 |
+
# Callback runs on model save event
|
255 |
+
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
|
256 |
+
if self.wandb:
|
257 |
+
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
258 |
+
if self.clearml:
|
259 |
+
self.clearml.task.update_output_model(model_path=str(last),
|
260 |
+
model_name='Latest Model',
|
261 |
+
auto_delete_file=False)
|
262 |
+
|
263 |
+
if self.comet_logger:
|
264 |
+
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
|
265 |
+
|
266 |
+
def on_train_end(self, last, best, epoch, results):
|
267 |
+
# Callback runs on training end, i.e. saving best model
|
268 |
+
if self.plots:
|
269 |
+
plot_results(file=self.save_dir / 'results.csv') # save results.png
|
270 |
+
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
271 |
+
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
272 |
+
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
273 |
+
|
274 |
+
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
|
275 |
+
for f in files:
|
276 |
+
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
277 |
+
|
278 |
+
if self.wandb:
|
279 |
+
self.wandb.log(dict(zip(self.keys[3:10], results)))
|
280 |
+
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
281 |
+
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
282 |
+
if not self.opt.evolve:
|
283 |
+
wandb.log_artifact(str(best if best.exists() else last),
|
284 |
+
type='model',
|
285 |
+
name=f'run_{self.wandb.wandb_run.id}_model',
|
286 |
+
aliases=['latest', 'best', 'stripped'])
|
287 |
+
self.wandb.finish_run()
|
288 |
+
|
289 |
+
if self.clearml and not self.opt.evolve:
|
290 |
+
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
|
291 |
+
name='Best Model',
|
292 |
+
auto_delete_file=False)
|
293 |
+
|
294 |
+
if self.comet_logger:
|
295 |
+
final_results = dict(zip(self.keys[3:10], results))
|
296 |
+
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
|
297 |
+
|
298 |
+
def on_params_update(self, params: dict):
|
299 |
+
# Update hyperparams or configs of the experiment
|
300 |
+
if self.wandb:
|
301 |
+
self.wandb.wandb_run.config.update(params, allow_val_change=True)
|
302 |
+
if self.comet_logger:
|
303 |
+
self.comet_logger.on_params_update(params)
|
304 |
+
|
305 |
+
|
306 |
+
class GenericLogger:
|
307 |
+
"""
|
308 |
+
YOLO General purpose logger for non-task specific logging
|
309 |
+
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
|
310 |
+
Arguments
|
311 |
+
opt: Run arguments
|
312 |
+
console_logger: Console logger
|
313 |
+
include: loggers to include
|
314 |
+
"""
|
315 |
+
|
316 |
+
def __init__(self, opt, console_logger, include=('tb', 'wandb')):
|
317 |
+
# init default loggers
|
318 |
+
self.save_dir = Path(opt.save_dir)
|
319 |
+
self.include = include
|
320 |
+
self.console_logger = console_logger
|
321 |
+
self.csv = self.save_dir / 'results.csv' # CSV logger
|
322 |
+
if 'tb' in self.include:
|
323 |
+
prefix = colorstr('TensorBoard: ')
|
324 |
+
self.console_logger.info(
|
325 |
+
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
|
326 |
+
self.tb = SummaryWriter(str(self.save_dir))
|
327 |
+
|
328 |
+
if wandb and 'wandb' in self.include:
|
329 |
+
self.wandb = wandb.init(project=web_project_name(str(opt.project)),
|
330 |
+
name=None if opt.name == "exp" else opt.name,
|
331 |
+
config=opt)
|
332 |
+
else:
|
333 |
+
self.wandb = None
|
334 |
+
|
335 |
+
def log_metrics(self, metrics, epoch):
|
336 |
+
# Log metrics dictionary to all loggers
|
337 |
+
if self.csv:
|
338 |
+
keys, vals = list(metrics.keys()), list(metrics.values())
|
339 |
+
n = len(metrics) + 1 # number of cols
|
340 |
+
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
|
341 |
+
with open(self.csv, 'a') as f:
|
342 |
+
f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
343 |
+
|
344 |
+
if self.tb:
|
345 |
+
for k, v in metrics.items():
|
346 |
+
self.tb.add_scalar(k, v, epoch)
|
347 |
+
|
348 |
+
if self.wandb:
|
349 |
+
self.wandb.log(metrics, step=epoch)
|
350 |
+
|
351 |
+
def log_images(self, files, name='Images', epoch=0):
|
352 |
+
# Log images to all loggers
|
353 |
+
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
|
354 |
+
files = [f for f in files if f.exists()] # filter by exists
|
355 |
+
|
356 |
+
if self.tb:
|
357 |
+
for f in files:
|
358 |
+
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
359 |
+
|
360 |
+
if self.wandb:
|
361 |
+
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
|
362 |
+
|
363 |
+
def log_graph(self, model, imgsz=(640, 640)):
|
364 |
+
# Log model graph to all loggers
|
365 |
+
if self.tb:
|
366 |
+
log_tensorboard_graph(self.tb, model, imgsz)
|
367 |
+
|
368 |
+
def log_model(self, model_path, epoch=0, metadata={}):
|
369 |
+
# Log model to all loggers
|
370 |
+
if self.wandb:
|
371 |
+
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
|
372 |
+
art.add_file(str(model_path))
|
373 |
+
wandb.log_artifact(art)
|
374 |
+
|
375 |
+
def update_params(self, params):
|
376 |
+
# Update the paramters logged
|
377 |
+
if self.wandb:
|
378 |
+
wandb.run.config.update(params, allow_val_change=True)
|
379 |
+
|
380 |
+
|
381 |
+
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
|
382 |
+
# Log model graph to TensorBoard
|
383 |
+
try:
|
384 |
+
p = next(model.parameters()) # for device, type
|
385 |
+
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
|
386 |
+
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
|
387 |
+
with warnings.catch_warnings():
|
388 |
+
warnings.simplefilter('ignore') # suppress jit trace warning
|
389 |
+
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
|
390 |
+
except Exception as e:
|
391 |
+
LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}')
|
392 |
+
|
393 |
+
|
394 |
+
def web_project_name(project):
|
395 |
+
# Convert local project name to web project name
|
396 |
+
if not project.startswith('runs/train'):
|
397 |
+
return project
|
398 |
+
suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
|
399 |
+
return f'YOLO{suffix}'
|
utils/loggers/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (13.6 kB). View file
|
|
utils/loggers/clearml/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# init
|
utils/loggers/clearml/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (180 Bytes). View file
|
|
utils/loggers/clearml/__pycache__/clearml_utils.cpython-38.pyc
ADDED
Binary file (5.61 kB). View file
|
|
utils/loggers/clearml/clearml_utils.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Main Logger class for ClearML experiment tracking."""
|
2 |
+
import glob
|
3 |
+
import re
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import yaml
|
8 |
+
|
9 |
+
from utils.plots import Annotator, colors
|
10 |
+
|
11 |
+
try:
|
12 |
+
import clearml
|
13 |
+
from clearml import Dataset, Task
|
14 |
+
|
15 |
+
assert hasattr(clearml, '__version__') # verify package import not local dir
|
16 |
+
except (ImportError, AssertionError):
|
17 |
+
clearml = None
|
18 |
+
|
19 |
+
|
20 |
+
def construct_dataset(clearml_info_string):
|
21 |
+
"""Load in a clearml dataset and fill the internal data_dict with its contents.
|
22 |
+
"""
|
23 |
+
dataset_id = clearml_info_string.replace('clearml://', '')
|
24 |
+
dataset = Dataset.get(dataset_id=dataset_id)
|
25 |
+
dataset_root_path = Path(dataset.get_local_copy())
|
26 |
+
|
27 |
+
# We'll search for the yaml file definition in the dataset
|
28 |
+
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
|
29 |
+
if len(yaml_filenames) > 1:
|
30 |
+
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
|
31 |
+
'the dataset definition this way.')
|
32 |
+
elif len(yaml_filenames) == 0:
|
33 |
+
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
|
34 |
+
'inside the dataset root path.')
|
35 |
+
with open(yaml_filenames[0]) as f:
|
36 |
+
dataset_definition = yaml.safe_load(f)
|
37 |
+
|
38 |
+
assert set(dataset_definition.keys()).issuperset(
|
39 |
+
{'train', 'test', 'val', 'nc', 'names'}
|
40 |
+
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
|
41 |
+
|
42 |
+
data_dict = dict()
|
43 |
+
data_dict['train'] = str(
|
44 |
+
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
|
45 |
+
data_dict['test'] = str(
|
46 |
+
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
|
47 |
+
data_dict['val'] = str(
|
48 |
+
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
|
49 |
+
data_dict['nc'] = dataset_definition['nc']
|
50 |
+
data_dict['names'] = dataset_definition['names']
|
51 |
+
|
52 |
+
return data_dict
|
53 |
+
|
54 |
+
|
55 |
+
class ClearmlLogger:
|
56 |
+
"""Log training runs, datasets, models, and predictions to ClearML.
|
57 |
+
|
58 |
+
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
|
59 |
+
this information includes hyperparameters, system configuration and metrics, model metrics, code information and
|
60 |
+
basic data metrics and analyses.
|
61 |
+
|
62 |
+
By providing additional command line arguments to train.py, datasets,
|
63 |
+
models and predictions can also be logged.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, opt, hyp):
|
67 |
+
"""
|
68 |
+
- Initialize ClearML Task, this object will capture the experiment
|
69 |
+
- Upload dataset version to ClearML Data if opt.upload_dataset is True
|
70 |
+
|
71 |
+
arguments:
|
72 |
+
opt (namespace) -- Commandline arguments for this run
|
73 |
+
hyp (dict) -- Hyperparameters for this run
|
74 |
+
|
75 |
+
"""
|
76 |
+
self.current_epoch = 0
|
77 |
+
# Keep tracked of amount of logged images to enforce a limit
|
78 |
+
self.current_epoch_logged_images = set()
|
79 |
+
# Maximum number of images to log to clearML per epoch
|
80 |
+
self.max_imgs_to_log_per_epoch = 16
|
81 |
+
# Get the interval of epochs when bounding box images should be logged
|
82 |
+
self.bbox_interval = opt.bbox_interval
|
83 |
+
self.clearml = clearml
|
84 |
+
self.task = None
|
85 |
+
self.data_dict = None
|
86 |
+
if self.clearml:
|
87 |
+
self.task = Task.init(
|
88 |
+
project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
|
89 |
+
task_name=opt.name if opt.name != 'exp' else 'Training',
|
90 |
+
tags=['YOLOv5'],
|
91 |
+
output_uri=True,
|
92 |
+
auto_connect_frameworks={'pytorch': False}
|
93 |
+
# We disconnect pytorch auto-detection, because we added manual model save points in the code
|
94 |
+
)
|
95 |
+
# ClearML's hooks will already grab all general parameters
|
96 |
+
# Only the hyperparameters coming from the yaml config file
|
97 |
+
# will have to be added manually!
|
98 |
+
self.task.connect(hyp, name='Hyperparameters')
|
99 |
+
|
100 |
+
# Get ClearML Dataset Version if requested
|
101 |
+
if opt.data.startswith('clearml://'):
|
102 |
+
# data_dict should have the following keys:
|
103 |
+
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
|
104 |
+
self.data_dict = construct_dataset(opt.data)
|
105 |
+
# Set data to data_dict because wandb will crash without this information and opt is the best way
|
106 |
+
# to give it to them
|
107 |
+
opt.data = self.data_dict
|
108 |
+
|
109 |
+
def log_debug_samples(self, files, title='Debug Samples'):
|
110 |
+
"""
|
111 |
+
Log files (images) as debug samples in the ClearML task.
|
112 |
+
|
113 |
+
arguments:
|
114 |
+
files (List(PosixPath)) a list of file paths in PosixPath format
|
115 |
+
title (str) A title that groups together images with the same values
|
116 |
+
"""
|
117 |
+
for f in files:
|
118 |
+
if f.exists():
|
119 |
+
it = re.search(r'_batch(\d+)', f.name)
|
120 |
+
iteration = int(it.groups()[0]) if it else 0
|
121 |
+
self.task.get_logger().report_image(title=title,
|
122 |
+
series=f.name.replace(it.group(), ''),
|
123 |
+
local_path=str(f),
|
124 |
+
iteration=iteration)
|
125 |
+
|
126 |
+
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
|
127 |
+
"""
|
128 |
+
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
|
129 |
+
|
130 |
+
arguments:
|
131 |
+
image_path (PosixPath) the path the original image file
|
132 |
+
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
133 |
+
class_names (dict): dict containing mapping of class int to class name
|
134 |
+
image (Tensor): A torch tensor containing the actual image data
|
135 |
+
"""
|
136 |
+
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
|
137 |
+
# Log every bbox_interval times and deduplicate for any intermittend extra eval runs
|
138 |
+
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
|
139 |
+
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
|
140 |
+
annotator = Annotator(im=im, pil=True)
|
141 |
+
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
|
142 |
+
color = colors(i)
|
143 |
+
|
144 |
+
class_name = class_names[int(class_nr)]
|
145 |
+
confidence_percentage = round(float(conf) * 100, 2)
|
146 |
+
label = f"{class_name}: {confidence_percentage}%"
|
147 |
+
|
148 |
+
if conf > conf_threshold:
|
149 |
+
annotator.rectangle(box.cpu().numpy(), outline=color)
|
150 |
+
annotator.box_label(box.cpu().numpy(), label=label, color=color)
|
151 |
+
|
152 |
+
annotated_image = annotator.result()
|
153 |
+
self.task.get_logger().report_image(title='Bounding Boxes',
|
154 |
+
series=image_path.name,
|
155 |
+
iteration=self.current_epoch,
|
156 |
+
image=annotated_image)
|
157 |
+
self.current_epoch_logged_images.add(image_path)
|
utils/loggers/clearml/hpo.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from clearml import Task
|
2 |
+
# Connecting ClearML with the current process,
|
3 |
+
# from here on everything is logged automatically
|
4 |
+
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
|
5 |
+
from clearml.automation.optuna import OptimizerOptuna
|
6 |
+
|
7 |
+
task = Task.init(project_name='Hyper-Parameter Optimization',
|
8 |
+
task_name='YOLOv5',
|
9 |
+
task_type=Task.TaskTypes.optimizer,
|
10 |
+
reuse_last_task_id=False)
|
11 |
+
|
12 |
+
# Example use case:
|
13 |
+
optimizer = HyperParameterOptimizer(
|
14 |
+
# This is the experiment we want to optimize
|
15 |
+
base_task_id='<your_template_task_id>',
|
16 |
+
# here we define the hyper-parameters to optimize
|
17 |
+
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
|
18 |
+
# For Example, here we see in the base experiment a section Named: "General"
|
19 |
+
# under it a parameter named "batch_size", this becomes "General/batch_size"
|
20 |
+
# If you have `argparse` for example, then arguments will appear under the "Args" section,
|
21 |
+
# and you should instead pass "Args/batch_size"
|
22 |
+
hyper_parameters=[
|
23 |
+
UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
|
24 |
+
UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
|
25 |
+
UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
|
26 |
+
UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
|
27 |
+
UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
|
28 |
+
UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
|
29 |
+
UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
|
30 |
+
UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
|
31 |
+
UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
|
32 |
+
UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
|
33 |
+
UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
|
34 |
+
UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
|
35 |
+
UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
|
36 |
+
UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
|
37 |
+
UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
|
38 |
+
UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
|
39 |
+
UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
|
40 |
+
UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
|
41 |
+
UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
|
42 |
+
UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
|
43 |
+
UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
|
44 |
+
UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
|
45 |
+
UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
|
46 |
+
UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
|
47 |
+
UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
|
48 |
+
UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
|
49 |
+
UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
|
50 |
+
UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
|
51 |
+
# this is the objective metric we want to maximize/minimize
|
52 |
+
objective_metric_title='metrics',
|
53 |
+
objective_metric_series='mAP_0.5',
|
54 |
+
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
|
55 |
+
objective_metric_sign='max',
|
56 |
+
# let us limit the number of concurrent experiments,
|
57 |
+
# this in turn will make sure we do dont bombard the scheduler with experiments.
|
58 |
+
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
|
59 |
+
max_number_of_concurrent_tasks=1,
|
60 |
+
# this is the optimizer class (actually doing the optimization)
|
61 |
+
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
|
62 |
+
optimizer_class=OptimizerOptuna,
|
63 |
+
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
|
64 |
+
save_top_k_tasks_only=5, # 5,
|
65 |
+
compute_time_limit=None,
|
66 |
+
total_max_jobs=20,
|
67 |
+
min_iteration_per_job=None,
|
68 |
+
max_iteration_per_job=None,
|
69 |
+
)
|
70 |
+
|
71 |
+
# report every 10 seconds, this is way too often, but we are testing here
|
72 |
+
optimizer.set_report_period(10 / 60)
|
73 |
+
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
|
74 |
+
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
|
75 |
+
# set the time limit for the optimization process (2 hours)
|
76 |
+
optimizer.set_time_limit(in_minutes=120.0)
|
77 |
+
# Start the optimization process in the local environment
|
78 |
+
optimizer.start_locally()
|
79 |
+
# wait until process is done (notice we are controlling the optimization process in the background)
|
80 |
+
optimizer.wait()
|
81 |
+
# make sure background optimization stopped
|
82 |
+
optimizer.stop()
|
83 |
+
|
84 |
+
print('We are done, good bye')
|
utils/loggers/comet/__init__.py
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
FILE = Path(__file__).resolve()
|
11 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
12 |
+
if str(ROOT) not in sys.path:
|
13 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
14 |
+
|
15 |
+
try:
|
16 |
+
import comet_ml
|
17 |
+
|
18 |
+
# Project Configuration
|
19 |
+
config = comet_ml.config.get_config()
|
20 |
+
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
|
21 |
+
except (ModuleNotFoundError, ImportError):
|
22 |
+
comet_ml = None
|
23 |
+
COMET_PROJECT_NAME = None
|
24 |
+
|
25 |
+
import PIL
|
26 |
+
import torch
|
27 |
+
import torchvision.transforms as T
|
28 |
+
import yaml
|
29 |
+
|
30 |
+
from utils.dataloaders import img2label_paths
|
31 |
+
from utils.general import check_dataset, scale_boxes, xywh2xyxy
|
32 |
+
from utils.metrics import box_iou
|
33 |
+
|
34 |
+
COMET_PREFIX = "comet://"
|
35 |
+
|
36 |
+
COMET_MODE = os.getenv("COMET_MODE", "online")
|
37 |
+
|
38 |
+
# Model Saving Settings
|
39 |
+
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
|
40 |
+
|
41 |
+
# Dataset Artifact Settings
|
42 |
+
COMET_UPLOAD_DATASET = os.getenv("COMET_UPLOAD_DATASET", "false").lower() == "true"
|
43 |
+
|
44 |
+
# Evaluation Settings
|
45 |
+
COMET_LOG_CONFUSION_MATRIX = os.getenv("COMET_LOG_CONFUSION_MATRIX", "true").lower() == "true"
|
46 |
+
COMET_LOG_PREDICTIONS = os.getenv("COMET_LOG_PREDICTIONS", "true").lower() == "true"
|
47 |
+
COMET_MAX_IMAGE_UPLOADS = int(os.getenv("COMET_MAX_IMAGE_UPLOADS", 100))
|
48 |
+
|
49 |
+
# Confusion Matrix Settings
|
50 |
+
CONF_THRES = float(os.getenv("CONF_THRES", 0.001))
|
51 |
+
IOU_THRES = float(os.getenv("IOU_THRES", 0.6))
|
52 |
+
|
53 |
+
# Batch Logging Settings
|
54 |
+
COMET_LOG_BATCH_METRICS = os.getenv("COMET_LOG_BATCH_METRICS", "false").lower() == "true"
|
55 |
+
COMET_BATCH_LOGGING_INTERVAL = os.getenv("COMET_BATCH_LOGGING_INTERVAL", 1)
|
56 |
+
COMET_PREDICTION_LOGGING_INTERVAL = os.getenv("COMET_PREDICTION_LOGGING_INTERVAL", 1)
|
57 |
+
COMET_LOG_PER_CLASS_METRICS = os.getenv("COMET_LOG_PER_CLASS_METRICS", "false").lower() == "true"
|
58 |
+
|
59 |
+
RANK = int(os.getenv("RANK", -1))
|
60 |
+
|
61 |
+
to_pil = T.ToPILImage()
|
62 |
+
|
63 |
+
|
64 |
+
class CometLogger:
|
65 |
+
"""Log metrics, parameters, source code, models and much more
|
66 |
+
with Comet
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(self, opt, hyp, run_id=None, job_type="Training", **experiment_kwargs) -> None:
|
70 |
+
self.job_type = job_type
|
71 |
+
self.opt = opt
|
72 |
+
self.hyp = hyp
|
73 |
+
|
74 |
+
# Comet Flags
|
75 |
+
self.comet_mode = COMET_MODE
|
76 |
+
|
77 |
+
self.save_model = opt.save_period > -1
|
78 |
+
self.model_name = COMET_MODEL_NAME
|
79 |
+
|
80 |
+
# Batch Logging Settings
|
81 |
+
self.log_batch_metrics = COMET_LOG_BATCH_METRICS
|
82 |
+
self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
|
83 |
+
|
84 |
+
# Dataset Artifact Settings
|
85 |
+
self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET
|
86 |
+
self.resume = self.opt.resume
|
87 |
+
|
88 |
+
# Default parameters to pass to Experiment objects
|
89 |
+
self.default_experiment_kwargs = {
|
90 |
+
"log_code": False,
|
91 |
+
"log_env_gpu": True,
|
92 |
+
"log_env_cpu": True,
|
93 |
+
"project_name": COMET_PROJECT_NAME,}
|
94 |
+
self.default_experiment_kwargs.update(experiment_kwargs)
|
95 |
+
self.experiment = self._get_experiment(self.comet_mode, run_id)
|
96 |
+
|
97 |
+
self.data_dict = self.check_dataset(self.opt.data)
|
98 |
+
self.class_names = self.data_dict["names"]
|
99 |
+
self.num_classes = self.data_dict["nc"]
|
100 |
+
|
101 |
+
self.logged_images_count = 0
|
102 |
+
self.max_images = COMET_MAX_IMAGE_UPLOADS
|
103 |
+
|
104 |
+
if run_id is None:
|
105 |
+
self.experiment.log_other("Created from", "YOLOv5")
|
106 |
+
if not isinstance(self.experiment, comet_ml.OfflineExperiment):
|
107 |
+
workspace, project_name, experiment_id = self.experiment.url.split("/")[-3:]
|
108 |
+
self.experiment.log_other(
|
109 |
+
"Run Path",
|
110 |
+
f"{workspace}/{project_name}/{experiment_id}",
|
111 |
+
)
|
112 |
+
self.log_parameters(vars(opt))
|
113 |
+
self.log_parameters(self.opt.hyp)
|
114 |
+
self.log_asset_data(
|
115 |
+
self.opt.hyp,
|
116 |
+
name="hyperparameters.json",
|
117 |
+
metadata={"type": "hyp-config-file"},
|
118 |
+
)
|
119 |
+
self.log_asset(
|
120 |
+
f"{self.opt.save_dir}/opt.yaml",
|
121 |
+
metadata={"type": "opt-config-file"},
|
122 |
+
)
|
123 |
+
|
124 |
+
self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
|
125 |
+
|
126 |
+
if hasattr(self.opt, "conf_thres"):
|
127 |
+
self.conf_thres = self.opt.conf_thres
|
128 |
+
else:
|
129 |
+
self.conf_thres = CONF_THRES
|
130 |
+
if hasattr(self.opt, "iou_thres"):
|
131 |
+
self.iou_thres = self.opt.iou_thres
|
132 |
+
else:
|
133 |
+
self.iou_thres = IOU_THRES
|
134 |
+
|
135 |
+
self.log_parameters({"val_iou_threshold": self.iou_thres, "val_conf_threshold": self.conf_thres})
|
136 |
+
|
137 |
+
self.comet_log_predictions = COMET_LOG_PREDICTIONS
|
138 |
+
if self.opt.bbox_interval == -1:
|
139 |
+
self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
|
140 |
+
else:
|
141 |
+
self.comet_log_prediction_interval = self.opt.bbox_interval
|
142 |
+
|
143 |
+
if self.comet_log_predictions:
|
144 |
+
self.metadata_dict = {}
|
145 |
+
self.logged_image_names = []
|
146 |
+
|
147 |
+
self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
|
148 |
+
|
149 |
+
self.experiment.log_others({
|
150 |
+
"comet_mode": COMET_MODE,
|
151 |
+
"comet_max_image_uploads": COMET_MAX_IMAGE_UPLOADS,
|
152 |
+
"comet_log_per_class_metrics": COMET_LOG_PER_CLASS_METRICS,
|
153 |
+
"comet_log_batch_metrics": COMET_LOG_BATCH_METRICS,
|
154 |
+
"comet_log_confusion_matrix": COMET_LOG_CONFUSION_MATRIX,
|
155 |
+
"comet_model_name": COMET_MODEL_NAME,})
|
156 |
+
|
157 |
+
# Check if running the Experiment with the Comet Optimizer
|
158 |
+
if hasattr(self.opt, "comet_optimizer_id"):
|
159 |
+
self.experiment.log_other("optimizer_id", self.opt.comet_optimizer_id)
|
160 |
+
self.experiment.log_other("optimizer_objective", self.opt.comet_optimizer_objective)
|
161 |
+
self.experiment.log_other("optimizer_metric", self.opt.comet_optimizer_metric)
|
162 |
+
self.experiment.log_other("optimizer_parameters", json.dumps(self.hyp))
|
163 |
+
|
164 |
+
def _get_experiment(self, mode, experiment_id=None):
|
165 |
+
if mode == "offline":
|
166 |
+
if experiment_id is not None:
|
167 |
+
return comet_ml.ExistingOfflineExperiment(
|
168 |
+
previous_experiment=experiment_id,
|
169 |
+
**self.default_experiment_kwargs,
|
170 |
+
)
|
171 |
+
|
172 |
+
return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,)
|
173 |
+
|
174 |
+
else:
|
175 |
+
try:
|
176 |
+
if experiment_id is not None:
|
177 |
+
return comet_ml.ExistingExperiment(
|
178 |
+
previous_experiment=experiment_id,
|
179 |
+
**self.default_experiment_kwargs,
|
180 |
+
)
|
181 |
+
|
182 |
+
return comet_ml.Experiment(**self.default_experiment_kwargs)
|
183 |
+
|
184 |
+
except ValueError:
|
185 |
+
logger.warning("COMET WARNING: "
|
186 |
+
"Comet credentials have not been set. "
|
187 |
+
"Comet will default to offline logging. "
|
188 |
+
"Please set your credentials to enable online logging.")
|
189 |
+
return self._get_experiment("offline", experiment_id)
|
190 |
+
|
191 |
+
return
|
192 |
+
|
193 |
+
def log_metrics(self, log_dict, **kwargs):
|
194 |
+
self.experiment.log_metrics(log_dict, **kwargs)
|
195 |
+
|
196 |
+
def log_parameters(self, log_dict, **kwargs):
|
197 |
+
self.experiment.log_parameters(log_dict, **kwargs)
|
198 |
+
|
199 |
+
def log_asset(self, asset_path, **kwargs):
|
200 |
+
self.experiment.log_asset(asset_path, **kwargs)
|
201 |
+
|
202 |
+
def log_asset_data(self, asset, **kwargs):
|
203 |
+
self.experiment.log_asset_data(asset, **kwargs)
|
204 |
+
|
205 |
+
def log_image(self, img, **kwargs):
|
206 |
+
self.experiment.log_image(img, **kwargs)
|
207 |
+
|
208 |
+
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
209 |
+
if not self.save_model:
|
210 |
+
return
|
211 |
+
|
212 |
+
model_metadata = {
|
213 |
+
"fitness_score": fitness_score[-1],
|
214 |
+
"epochs_trained": epoch + 1,
|
215 |
+
"save_period": opt.save_period,
|
216 |
+
"total_epochs": opt.epochs,}
|
217 |
+
|
218 |
+
model_files = glob.glob(f"{path}/*.pt")
|
219 |
+
for model_path in model_files:
|
220 |
+
name = Path(model_path).name
|
221 |
+
|
222 |
+
self.experiment.log_model(
|
223 |
+
self.model_name,
|
224 |
+
file_or_folder=model_path,
|
225 |
+
file_name=name,
|
226 |
+
metadata=model_metadata,
|
227 |
+
overwrite=True,
|
228 |
+
)
|
229 |
+
|
230 |
+
def check_dataset(self, data_file):
|
231 |
+
with open(data_file) as f:
|
232 |
+
data_config = yaml.safe_load(f)
|
233 |
+
|
234 |
+
if data_config['path'].startswith(COMET_PREFIX):
|
235 |
+
path = data_config['path'].replace(COMET_PREFIX, "")
|
236 |
+
data_dict = self.download_dataset_artifact(path)
|
237 |
+
|
238 |
+
return data_dict
|
239 |
+
|
240 |
+
self.log_asset(self.opt.data, metadata={"type": "data-config-file"})
|
241 |
+
|
242 |
+
return check_dataset(data_file)
|
243 |
+
|
244 |
+
def log_predictions(self, image, labelsn, path, shape, predn):
|
245 |
+
if self.logged_images_count >= self.max_images:
|
246 |
+
return
|
247 |
+
detections = predn[predn[:, 4] > self.conf_thres]
|
248 |
+
iou = box_iou(labelsn[:, 1:], detections[:, :4])
|
249 |
+
mask, _ = torch.where(iou > self.iou_thres)
|
250 |
+
if len(mask) == 0:
|
251 |
+
return
|
252 |
+
|
253 |
+
filtered_detections = detections[mask]
|
254 |
+
filtered_labels = labelsn[mask]
|
255 |
+
|
256 |
+
image_id = path.split("/")[-1].split(".")[0]
|
257 |
+
image_name = f"{image_id}_curr_epoch_{self.experiment.curr_epoch}"
|
258 |
+
if image_name not in self.logged_image_names:
|
259 |
+
native_scale_image = PIL.Image.open(path)
|
260 |
+
self.log_image(native_scale_image, name=image_name)
|
261 |
+
self.logged_image_names.append(image_name)
|
262 |
+
|
263 |
+
metadata = []
|
264 |
+
for cls, *xyxy in filtered_labels.tolist():
|
265 |
+
metadata.append({
|
266 |
+
"label": f"{self.class_names[int(cls)]}-gt",
|
267 |
+
"score": 100,
|
268 |
+
"box": {
|
269 |
+
"x": xyxy[0],
|
270 |
+
"y": xyxy[1],
|
271 |
+
"x2": xyxy[2],
|
272 |
+
"y2": xyxy[3]},})
|
273 |
+
for *xyxy, conf, cls in filtered_detections.tolist():
|
274 |
+
metadata.append({
|
275 |
+
"label": f"{self.class_names[int(cls)]}",
|
276 |
+
"score": conf * 100,
|
277 |
+
"box": {
|
278 |
+
"x": xyxy[0],
|
279 |
+
"y": xyxy[1],
|
280 |
+
"x2": xyxy[2],
|
281 |
+
"y2": xyxy[3]},})
|
282 |
+
|
283 |
+
self.metadata_dict[image_name] = metadata
|
284 |
+
self.logged_images_count += 1
|
285 |
+
|
286 |
+
return
|
287 |
+
|
288 |
+
def preprocess_prediction(self, image, labels, shape, pred):
|
289 |
+
nl, _ = labels.shape[0], pred.shape[0]
|
290 |
+
|
291 |
+
# Predictions
|
292 |
+
if self.opt.single_cls:
|
293 |
+
pred[:, 5] = 0
|
294 |
+
|
295 |
+
predn = pred.clone()
|
296 |
+
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
|
297 |
+
|
298 |
+
labelsn = None
|
299 |
+
if nl:
|
300 |
+
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
301 |
+
scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
|
302 |
+
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
303 |
+
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
|
304 |
+
|
305 |
+
return predn, labelsn
|
306 |
+
|
307 |
+
def add_assets_to_artifact(self, artifact, path, asset_path, split):
|
308 |
+
img_paths = sorted(glob.glob(f"{asset_path}/*"))
|
309 |
+
label_paths = img2label_paths(img_paths)
|
310 |
+
|
311 |
+
for image_file, label_file in zip(img_paths, label_paths):
|
312 |
+
image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
|
313 |
+
|
314 |
+
try:
|
315 |
+
artifact.add(image_file, logical_path=image_logical_path, metadata={"split": split})
|
316 |
+
artifact.add(label_file, logical_path=label_logical_path, metadata={"split": split})
|
317 |
+
except ValueError as e:
|
318 |
+
logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.')
|
319 |
+
logger.error(f"COMET ERROR: {e}")
|
320 |
+
continue
|
321 |
+
|
322 |
+
return artifact
|
323 |
+
|
324 |
+
def upload_dataset_artifact(self):
|
325 |
+
dataset_name = self.data_dict.get("dataset_name", "yolov5-dataset")
|
326 |
+
path = str((ROOT / Path(self.data_dict["path"])).resolve())
|
327 |
+
|
328 |
+
metadata = self.data_dict.copy()
|
329 |
+
for key in ["train", "val", "test"]:
|
330 |
+
split_path = metadata.get(key)
|
331 |
+
if split_path is not None:
|
332 |
+
metadata[key] = split_path.replace(path, "")
|
333 |
+
|
334 |
+
artifact = comet_ml.Artifact(name=dataset_name, artifact_type="dataset", metadata=metadata)
|
335 |
+
for key in metadata.keys():
|
336 |
+
if key in ["train", "val", "test"]:
|
337 |
+
if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
|
338 |
+
continue
|
339 |
+
|
340 |
+
asset_path = self.data_dict.get(key)
|
341 |
+
if asset_path is not None:
|
342 |
+
artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
|
343 |
+
|
344 |
+
self.experiment.log_artifact(artifact)
|
345 |
+
|
346 |
+
return
|
347 |
+
|
348 |
+
def download_dataset_artifact(self, artifact_path):
|
349 |
+
logged_artifact = self.experiment.get_artifact(artifact_path)
|
350 |
+
artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
|
351 |
+
logged_artifact.download(artifact_save_dir)
|
352 |
+
|
353 |
+
metadata = logged_artifact.metadata
|
354 |
+
data_dict = metadata.copy()
|
355 |
+
data_dict["path"] = artifact_save_dir
|
356 |
+
|
357 |
+
metadata_names = metadata.get("names")
|
358 |
+
if type(metadata_names) == dict:
|
359 |
+
data_dict["names"] = {int(k): v for k, v in metadata.get("names").items()}
|
360 |
+
elif type(metadata_names) == list:
|
361 |
+
data_dict["names"] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
|
362 |
+
else:
|
363 |
+
raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
|
364 |
+
|
365 |
+
data_dict = self.update_data_paths(data_dict)
|
366 |
+
return data_dict
|
367 |
+
|
368 |
+
def update_data_paths(self, data_dict):
|
369 |
+
path = data_dict.get("path", "")
|
370 |
+
|
371 |
+
for split in ["train", "val", "test"]:
|
372 |
+
if data_dict.get(split):
|
373 |
+
split_path = data_dict.get(split)
|
374 |
+
data_dict[split] = (f"{path}/{split_path}" if isinstance(split, str) else [
|
375 |
+
f"{path}/{x}" for x in split_path])
|
376 |
+
|
377 |
+
return data_dict
|
378 |
+
|
379 |
+
def on_pretrain_routine_end(self, paths):
|
380 |
+
if self.opt.resume:
|
381 |
+
return
|
382 |
+
|
383 |
+
for path in paths:
|
384 |
+
self.log_asset(str(path))
|
385 |
+
|
386 |
+
if self.upload_dataset:
|
387 |
+
if not self.resume:
|
388 |
+
self.upload_dataset_artifact()
|
389 |
+
|
390 |
+
return
|
391 |
+
|
392 |
+
def on_train_start(self):
|
393 |
+
self.log_parameters(self.hyp)
|
394 |
+
|
395 |
+
def on_train_epoch_start(self):
|
396 |
+
return
|
397 |
+
|
398 |
+
def on_train_epoch_end(self, epoch):
|
399 |
+
self.experiment.curr_epoch = epoch
|
400 |
+
|
401 |
+
return
|
402 |
+
|
403 |
+
def on_train_batch_start(self):
|
404 |
+
return
|
405 |
+
|
406 |
+
def on_train_batch_end(self, log_dict, step):
|
407 |
+
self.experiment.curr_step = step
|
408 |
+
if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
|
409 |
+
self.log_metrics(log_dict, step=step)
|
410 |
+
|
411 |
+
return
|
412 |
+
|
413 |
+
def on_train_end(self, files, save_dir, last, best, epoch, results):
|
414 |
+
if self.comet_log_predictions:
|
415 |
+
curr_epoch = self.experiment.curr_epoch
|
416 |
+
self.experiment.log_asset_data(self.metadata_dict, "image-metadata.json", epoch=curr_epoch)
|
417 |
+
|
418 |
+
for f in files:
|
419 |
+
self.log_asset(f, metadata={"epoch": epoch})
|
420 |
+
self.log_asset(f"{save_dir}/results.csv", metadata={"epoch": epoch})
|
421 |
+
|
422 |
+
if not self.opt.evolve:
|
423 |
+
model_path = str(best if best.exists() else last)
|
424 |
+
name = Path(model_path).name
|
425 |
+
if self.save_model:
|
426 |
+
self.experiment.log_model(
|
427 |
+
self.model_name,
|
428 |
+
file_or_folder=model_path,
|
429 |
+
file_name=name,
|
430 |
+
overwrite=True,
|
431 |
+
)
|
432 |
+
|
433 |
+
# Check if running Experiment with Comet Optimizer
|
434 |
+
if hasattr(self.opt, 'comet_optimizer_id'):
|
435 |
+
metric = results.get(self.opt.comet_optimizer_metric)
|
436 |
+
self.experiment.log_other('optimizer_metric_value', metric)
|
437 |
+
|
438 |
+
self.finish_run()
|
439 |
+
|
440 |
+
def on_val_start(self):
|
441 |
+
return
|
442 |
+
|
443 |
+
def on_val_batch_start(self):
|
444 |
+
return
|
445 |
+
|
446 |
+
def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
|
447 |
+
if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
|
448 |
+
return
|
449 |
+
|
450 |
+
for si, pred in enumerate(outputs):
|
451 |
+
if len(pred) == 0:
|
452 |
+
continue
|
453 |
+
|
454 |
+
image = images[si]
|
455 |
+
labels = targets[targets[:, 0] == si, 1:]
|
456 |
+
shape = shapes[si]
|
457 |
+
path = paths[si]
|
458 |
+
predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
|
459 |
+
if labelsn is not None:
|
460 |
+
self.log_predictions(image, labelsn, path, shape, predn)
|
461 |
+
|
462 |
+
return
|
463 |
+
|
464 |
+
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
465 |
+
if self.comet_log_per_class_metrics:
|
466 |
+
if self.num_classes > 1:
|
467 |
+
for i, c in enumerate(ap_class):
|
468 |
+
class_name = self.class_names[c]
|
469 |
+
self.experiment.log_metrics(
|
470 |
+
{
|
471 |
+
'mAP@.5': ap50[i],
|
472 |
+
'mAP@.5:.95': ap[i],
|
473 |
+
'precision': p[i],
|
474 |
+
'recall': r[i],
|
475 |
+
'f1': f1[i],
|
476 |
+
'true_positives': tp[i],
|
477 |
+
'false_positives': fp[i],
|
478 |
+
'support': nt[c]},
|
479 |
+
prefix=class_name)
|
480 |
+
|
481 |
+
if self.comet_log_confusion_matrix:
|
482 |
+
epoch = self.experiment.curr_epoch
|
483 |
+
class_names = list(self.class_names.values())
|
484 |
+
class_names.append("background")
|
485 |
+
num_classes = len(class_names)
|
486 |
+
|
487 |
+
self.experiment.log_confusion_matrix(
|
488 |
+
matrix=confusion_matrix.matrix,
|
489 |
+
max_categories=num_classes,
|
490 |
+
labels=class_names,
|
491 |
+
epoch=epoch,
|
492 |
+
column_label='Actual Category',
|
493 |
+
row_label='Predicted Category',
|
494 |
+
file_name=f"confusion-matrix-epoch-{epoch}.json",
|
495 |
+
)
|
496 |
+
|
497 |
+
def on_fit_epoch_end(self, result, epoch):
|
498 |
+
self.log_metrics(result, epoch=epoch)
|
499 |
+
|
500 |
+
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
501 |
+
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
|
502 |
+
self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
503 |
+
|
504 |
+
def on_params_update(self, params):
|
505 |
+
self.log_parameters(params)
|
506 |
+
|
507 |
+
def finish_run(self):
|
508 |
+
self.experiment.end()
|
utils/loggers/comet/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (14.8 kB). View file
|
|
utils/loggers/comet/__pycache__/comet_utils.cpython-38.pyc
ADDED
Binary file (4.21 kB). View file
|
|
utils/loggers/comet/comet_utils.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from urllib.parse import urlparse
|
4 |
+
|
5 |
+
try:
|
6 |
+
import comet_ml
|
7 |
+
except (ModuleNotFoundError, ImportError):
|
8 |
+
comet_ml = None
|
9 |
+
|
10 |
+
import yaml
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
COMET_PREFIX = "comet://"
|
15 |
+
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
|
16 |
+
COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv("COMET_DEFAULT_CHECKPOINT_FILENAME", "last.pt")
|
17 |
+
|
18 |
+
|
19 |
+
def download_model_checkpoint(opt, experiment):
|
20 |
+
model_dir = f"{opt.project}/{experiment.name}"
|
21 |
+
os.makedirs(model_dir, exist_ok=True)
|
22 |
+
|
23 |
+
model_name = COMET_MODEL_NAME
|
24 |
+
model_asset_list = experiment.get_model_asset_list(model_name)
|
25 |
+
|
26 |
+
if len(model_asset_list) == 0:
|
27 |
+
logger.error(f"COMET ERROR: No checkpoints found for model name : {model_name}")
|
28 |
+
return
|
29 |
+
|
30 |
+
model_asset_list = sorted(
|
31 |
+
model_asset_list,
|
32 |
+
key=lambda x: x["step"],
|
33 |
+
reverse=True,
|
34 |
+
)
|
35 |
+
logged_checkpoint_map = {asset["fileName"]: asset["assetId"] for asset in model_asset_list}
|
36 |
+
|
37 |
+
resource_url = urlparse(opt.weights)
|
38 |
+
checkpoint_filename = resource_url.query
|
39 |
+
|
40 |
+
if checkpoint_filename:
|
41 |
+
asset_id = logged_checkpoint_map.get(checkpoint_filename)
|
42 |
+
else:
|
43 |
+
asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
|
44 |
+
checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
|
45 |
+
|
46 |
+
if asset_id is None:
|
47 |
+
logger.error(f"COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment")
|
48 |
+
return
|
49 |
+
|
50 |
+
try:
|
51 |
+
logger.info(f"COMET INFO: Downloading checkpoint {checkpoint_filename}")
|
52 |
+
asset_filename = checkpoint_filename
|
53 |
+
|
54 |
+
model_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
55 |
+
model_download_path = f"{model_dir}/{asset_filename}"
|
56 |
+
with open(model_download_path, "wb") as f:
|
57 |
+
f.write(model_binary)
|
58 |
+
|
59 |
+
opt.weights = model_download_path
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
logger.warning("COMET WARNING: Unable to download checkpoint from Comet")
|
63 |
+
logger.exception(e)
|
64 |
+
|
65 |
+
|
66 |
+
def set_opt_parameters(opt, experiment):
|
67 |
+
"""Update the opts Namespace with parameters
|
68 |
+
from Comet's ExistingExperiment when resuming a run
|
69 |
+
|
70 |
+
Args:
|
71 |
+
opt (argparse.Namespace): Namespace of command line options
|
72 |
+
experiment (comet_ml.APIExperiment): Comet API Experiment object
|
73 |
+
"""
|
74 |
+
asset_list = experiment.get_asset_list()
|
75 |
+
resume_string = opt.resume
|
76 |
+
|
77 |
+
for asset in asset_list:
|
78 |
+
if asset["fileName"] == "opt.yaml":
|
79 |
+
asset_id = asset["assetId"]
|
80 |
+
asset_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
81 |
+
opt_dict = yaml.safe_load(asset_binary)
|
82 |
+
for key, value in opt_dict.items():
|
83 |
+
setattr(opt, key, value)
|
84 |
+
opt.resume = resume_string
|
85 |
+
|
86 |
+
# Save hyperparameters to YAML file
|
87 |
+
# Necessary to pass checks in training script
|
88 |
+
save_dir = f"{opt.project}/{experiment.name}"
|
89 |
+
os.makedirs(save_dir, exist_ok=True)
|
90 |
+
|
91 |
+
hyp_yaml_path = f"{save_dir}/hyp.yaml"
|
92 |
+
with open(hyp_yaml_path, "w") as f:
|
93 |
+
yaml.dump(opt.hyp, f)
|
94 |
+
opt.hyp = hyp_yaml_path
|
95 |
+
|
96 |
+
|
97 |
+
def check_comet_weights(opt):
|
98 |
+
"""Downloads model weights from Comet and updates the
|
99 |
+
weights path to point to saved weights location
|
100 |
+
|
101 |
+
Args:
|
102 |
+
opt (argparse.Namespace): Command Line arguments passed
|
103 |
+
to YOLOv5 training script
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
None/bool: Return True if weights are successfully downloaded
|
107 |
+
else return None
|
108 |
+
"""
|
109 |
+
if comet_ml is None:
|
110 |
+
return
|
111 |
+
|
112 |
+
if isinstance(opt.weights, str):
|
113 |
+
if opt.weights.startswith(COMET_PREFIX):
|
114 |
+
api = comet_ml.API()
|
115 |
+
resource = urlparse(opt.weights)
|
116 |
+
experiment_path = f"{resource.netloc}{resource.path}"
|
117 |
+
experiment = api.get(experiment_path)
|
118 |
+
download_model_checkpoint(opt, experiment)
|
119 |
+
return True
|
120 |
+
|
121 |
+
return None
|
122 |
+
|
123 |
+
|
124 |
+
def check_comet_resume(opt):
|
125 |
+
"""Restores run parameters to its original state based on the model checkpoint
|
126 |
+
and logged Experiment parameters.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
opt (argparse.Namespace): Command Line arguments passed
|
130 |
+
to YOLOv5 training script
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
None/bool: Return True if the run is restored successfully
|
134 |
+
else return None
|
135 |
+
"""
|
136 |
+
if comet_ml is None:
|
137 |
+
return
|
138 |
+
|
139 |
+
if isinstance(opt.resume, str):
|
140 |
+
if opt.resume.startswith(COMET_PREFIX):
|
141 |
+
api = comet_ml.API()
|
142 |
+
resource = urlparse(opt.resume)
|
143 |
+
experiment_path = f"{resource.netloc}{resource.path}"
|
144 |
+
experiment = api.get(experiment_path)
|
145 |
+
set_opt_parameters(opt, experiment)
|
146 |
+
download_model_checkpoint(opt, experiment)
|
147 |
+
|
148 |
+
return True
|
149 |
+
|
150 |
+
return None
|
utils/loggers/comet/hpo.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import comet_ml
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
FILE = Path(__file__).resolve()
|
13 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
14 |
+
if str(ROOT) not in sys.path:
|
15 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
16 |
+
|
17 |
+
from train import train
|
18 |
+
from utils.callbacks import Callbacks
|
19 |
+
from utils.general import increment_path
|
20 |
+
from utils.torch_utils import select_device
|
21 |
+
|
22 |
+
# Project Configuration
|
23 |
+
config = comet_ml.config.get_config()
|
24 |
+
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
|
25 |
+
|
26 |
+
|
27 |
+
def get_args(known=False):
|
28 |
+
parser = argparse.ArgumentParser()
|
29 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
|
30 |
+
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
31 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
32 |
+
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
|
33 |
+
parser.add_argument('--epochs', type=int, default=300, help='total training epochs')
|
34 |
+
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
35 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
36 |
+
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
37 |
+
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
38 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
39 |
+
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
40 |
+
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
41 |
+
parser.add_argument('--noplots', action='store_true', help='save no plot files')
|
42 |
+
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
43 |
+
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
44 |
+
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
|
45 |
+
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
46 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
47 |
+
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
48 |
+
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
49 |
+
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
|
50 |
+
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
51 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
52 |
+
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
|
53 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
54 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
55 |
+
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
56 |
+
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
|
57 |
+
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
58 |
+
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
59 |
+
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
60 |
+
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
61 |
+
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
62 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
63 |
+
|
64 |
+
# Weights & Biases arguments
|
65 |
+
parser.add_argument('--entity', default=None, help='W&B: Entity')
|
66 |
+
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
|
67 |
+
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
|
68 |
+
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
|
69 |
+
|
70 |
+
# Comet Arguments
|
71 |
+
parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.")
|
72 |
+
parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.")
|
73 |
+
parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.")
|
74 |
+
parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.")
|
75 |
+
parser.add_argument("--comet_optimizer_workers",
|
76 |
+
type=int,
|
77 |
+
default=1,
|
78 |
+
help="Comet: Number of Parallel Workers to use with the Comet Optimizer.")
|
79 |
+
|
80 |
+
return parser.parse_known_args()[0] if known else parser.parse_args()
|
81 |
+
|
82 |
+
|
83 |
+
def run(parameters, opt):
|
84 |
+
hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]}
|
85 |
+
|
86 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
87 |
+
opt.batch_size = parameters.get("batch_size")
|
88 |
+
opt.epochs = parameters.get("epochs")
|
89 |
+
|
90 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
91 |
+
train(hyp_dict, opt, device, callbacks=Callbacks())
|
92 |
+
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
opt = get_args(known=True)
|
96 |
+
|
97 |
+
opt.weights = str(opt.weights)
|
98 |
+
opt.cfg = str(opt.cfg)
|
99 |
+
opt.data = str(opt.data)
|
100 |
+
opt.project = str(opt.project)
|
101 |
+
|
102 |
+
optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
|
103 |
+
if optimizer_id is None:
|
104 |
+
with open(opt.comet_optimizer_config) as f:
|
105 |
+
optimizer_config = json.load(f)
|
106 |
+
optimizer = comet_ml.Optimizer(optimizer_config)
|
107 |
+
else:
|
108 |
+
optimizer = comet_ml.Optimizer(optimizer_id)
|
109 |
+
|
110 |
+
opt.comet_optimizer_id = optimizer.id
|
111 |
+
status = optimizer.status()
|
112 |
+
|
113 |
+
opt.comet_optimizer_objective = status["spec"]["objective"]
|
114 |
+
opt.comet_optimizer_metric = status["spec"]["metric"]
|
115 |
+
|
116 |
+
logger.info("COMET INFO: Starting Hyperparameter Sweep")
|
117 |
+
for parameter in optimizer.get_parameters():
|
118 |
+
run(parameter["parameters"], opt)
|
utils/loggers/comet/optimizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"algorithm": "random",
|
3 |
+
"parameters": {
|
4 |
+
"anchor_t": {
|
5 |
+
"type": "discrete",
|
6 |
+
"values": [
|
7 |
+
2,
|
8 |
+
8
|
9 |
+
]
|
10 |
+
},
|
11 |
+
"batch_size": {
|
12 |
+
"type": "discrete",
|
13 |
+
"values": [
|
14 |
+
16,
|
15 |
+
32,
|
16 |
+
64
|
17 |
+
]
|
18 |
+
},
|
19 |
+
"box": {
|
20 |
+
"type": "discrete",
|
21 |
+
"values": [
|
22 |
+
0.02,
|
23 |
+
0.2
|
24 |
+
]
|
25 |
+
},
|
26 |
+
"cls": {
|
27 |
+
"type": "discrete",
|
28 |
+
"values": [
|
29 |
+
0.2
|
30 |
+
]
|
31 |
+
},
|
32 |
+
"cls_pw": {
|
33 |
+
"type": "discrete",
|
34 |
+
"values": [
|
35 |
+
0.5
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"copy_paste": {
|
39 |
+
"type": "discrete",
|
40 |
+
"values": [
|
41 |
+
1
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"degrees": {
|
45 |
+
"type": "discrete",
|
46 |
+
"values": [
|
47 |
+
0,
|
48 |
+
45
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"epochs": {
|
52 |
+
"type": "discrete",
|
53 |
+
"values": [
|
54 |
+
5
|
55 |
+
]
|
56 |
+
},
|
57 |
+
"fl_gamma": {
|
58 |
+
"type": "discrete",
|
59 |
+
"values": [
|
60 |
+
0
|
61 |
+
]
|
62 |
+
},
|
63 |
+
"fliplr": {
|
64 |
+
"type": "discrete",
|
65 |
+
"values": [
|
66 |
+
0
|
67 |
+
]
|
68 |
+
},
|
69 |
+
"flipud": {
|
70 |
+
"type": "discrete",
|
71 |
+
"values": [
|
72 |
+
0
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"hsv_h": {
|
76 |
+
"type": "discrete",
|
77 |
+
"values": [
|
78 |
+
0
|
79 |
+
]
|
80 |
+
},
|
81 |
+
"hsv_s": {
|
82 |
+
"type": "discrete",
|
83 |
+
"values": [
|
84 |
+
0
|
85 |
+
]
|
86 |
+
},
|
87 |
+
"hsv_v": {
|
88 |
+
"type": "discrete",
|
89 |
+
"values": [
|
90 |
+
0
|
91 |
+
]
|
92 |
+
},
|
93 |
+
"iou_t": {
|
94 |
+
"type": "discrete",
|
95 |
+
"values": [
|
96 |
+
0.7
|
97 |
+
]
|
98 |
+
},
|
99 |
+
"lr0": {
|
100 |
+
"type": "discrete",
|
101 |
+
"values": [
|
102 |
+
1e-05,
|
103 |
+
0.1
|
104 |
+
]
|
105 |
+
},
|
106 |
+
"lrf": {
|
107 |
+
"type": "discrete",
|
108 |
+
"values": [
|
109 |
+
0.01,
|
110 |
+
1
|
111 |
+
]
|
112 |
+
},
|
113 |
+
"mixup": {
|
114 |
+
"type": "discrete",
|
115 |
+
"values": [
|
116 |
+
1
|
117 |
+
]
|
118 |
+
},
|
119 |
+
"momentum": {
|
120 |
+
"type": "discrete",
|
121 |
+
"values": [
|
122 |
+
0.6
|
123 |
+
]
|
124 |
+
},
|
125 |
+
"mosaic": {
|
126 |
+
"type": "discrete",
|
127 |
+
"values": [
|
128 |
+
0
|
129 |
+
]
|
130 |
+
},
|
131 |
+
"obj": {
|
132 |
+
"type": "discrete",
|
133 |
+
"values": [
|
134 |
+
0.2
|
135 |
+
]
|
136 |
+
},
|
137 |
+
"obj_pw": {
|
138 |
+
"type": "discrete",
|
139 |
+
"values": [
|
140 |
+
0.5
|
141 |
+
]
|
142 |
+
},
|
143 |
+
"optimizer": {
|
144 |
+
"type": "categorical",
|
145 |
+
"values": [
|
146 |
+
"SGD",
|
147 |
+
"Adam",
|
148 |
+
"AdamW"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
"perspective": {
|
152 |
+
"type": "discrete",
|
153 |
+
"values": [
|
154 |
+
0
|
155 |
+
]
|
156 |
+
},
|
157 |
+
"scale": {
|
158 |
+
"type": "discrete",
|
159 |
+
"values": [
|
160 |
+
0
|
161 |
+
]
|
162 |
+
},
|
163 |
+
"shear": {
|
164 |
+
"type": "discrete",
|
165 |
+
"values": [
|
166 |
+
0
|
167 |
+
]
|
168 |
+
},
|
169 |
+
"translate": {
|
170 |
+
"type": "discrete",
|
171 |
+
"values": [
|
172 |
+
0
|
173 |
+
]
|
174 |
+
},
|
175 |
+
"warmup_bias_lr": {
|
176 |
+
"type": "discrete",
|
177 |
+
"values": [
|
178 |
+
0,
|
179 |
+
0.2
|
180 |
+
]
|
181 |
+
},
|
182 |
+
"warmup_epochs": {
|
183 |
+
"type": "discrete",
|
184 |
+
"values": [
|
185 |
+
5
|
186 |
+
]
|
187 |
+
},
|
188 |
+
"warmup_momentum": {
|
189 |
+
"type": "discrete",
|
190 |
+
"values": [
|
191 |
+
0,
|
192 |
+
0.95
|
193 |
+
]
|
194 |
+
},
|
195 |
+
"weight_decay": {
|
196 |
+
"type": "discrete",
|
197 |
+
"values": [
|
198 |
+
0,
|
199 |
+
0.001
|
200 |
+
]
|
201 |
+
}
|
202 |
+
},
|
203 |
+
"spec": {
|
204 |
+
"maxCombo": 0,
|
205 |
+
"metric": "metrics/mAP_0.5",
|
206 |
+
"objective": "maximize"
|
207 |
+
},
|
208 |
+
"trials": 1
|
209 |
+
}
|
utils/loggers/wandb/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# init
|
utils/loggers/wandb/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (178 Bytes). View file
|
|
utils/loggers/wandb/__pycache__/wandb_utils.cpython-38.pyc
ADDED
Binary file (19.7 kB). View file
|
|
utils/loggers/wandb/log_dataset.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from wandb_utils import WandbLogger
|
4 |
+
|
5 |
+
from utils.general import LOGGER
|
6 |
+
|
7 |
+
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
8 |
+
|
9 |
+
|
10 |
+
def create_dataset_artifact(opt):
|
11 |
+
logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
|
12 |
+
if not logger.wandb:
|
13 |
+
LOGGER.info("install wandb using `pip install wandb` to log the dataset")
|
14 |
+
|
15 |
+
|
16 |
+
if __name__ == '__main__':
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
19 |
+
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
20 |
+
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
|
21 |
+
parser.add_argument('--entity', default=None, help='W&B entity')
|
22 |
+
parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
|
23 |
+
|
24 |
+
opt = parser.parse_args()
|
25 |
+
opt.resume = False # Explicitly disallow resume check for dataset upload job
|
26 |
+
|
27 |
+
create_dataset_artifact(opt)
|
utils/loggers/wandb/sweep.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import wandb
|
5 |
+
|
6 |
+
FILE = Path(__file__).resolve()
|
7 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
8 |
+
if str(ROOT) not in sys.path:
|
9 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
10 |
+
|
11 |
+
from train import parse_opt, train
|
12 |
+
from utils.callbacks import Callbacks
|
13 |
+
from utils.general import increment_path
|
14 |
+
from utils.torch_utils import select_device
|
15 |
+
|
16 |
+
|
17 |
+
def sweep():
|
18 |
+
wandb.init()
|
19 |
+
# Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb.
|
20 |
+
hyp_dict = vars(wandb.config).get("_items").copy()
|
21 |
+
|
22 |
+
# Workaround: get necessary opt args
|
23 |
+
opt = parse_opt(known=True)
|
24 |
+
opt.batch_size = hyp_dict.get("batch_size")
|
25 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
26 |
+
opt.epochs = hyp_dict.get("epochs")
|
27 |
+
opt.nosave = True
|
28 |
+
opt.data = hyp_dict.get("data")
|
29 |
+
opt.weights = str(opt.weights)
|
30 |
+
opt.cfg = str(opt.cfg)
|
31 |
+
opt.data = str(opt.data)
|
32 |
+
opt.hyp = str(opt.hyp)
|
33 |
+
opt.project = str(opt.project)
|
34 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
35 |
+
|
36 |
+
# train
|
37 |
+
train(hyp_dict, opt, device, callbacks=Callbacks())
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
sweep()
|
utils/loggers/wandb/sweep.yaml
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hyperparameters for training
|
2 |
+
# To set range-
|
3 |
+
# Provide min and max values as:
|
4 |
+
# parameter:
|
5 |
+
#
|
6 |
+
# min: scalar
|
7 |
+
# max: scalar
|
8 |
+
# OR
|
9 |
+
#
|
10 |
+
# Set a specific list of search space-
|
11 |
+
# parameter:
|
12 |
+
# values: [scalar1, scalar2, scalar3...]
|
13 |
+
#
|
14 |
+
# You can use grid, bayesian and hyperopt search strategy
|
15 |
+
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
|
16 |
+
|
17 |
+
program: utils/loggers/wandb/sweep.py
|
18 |
+
method: random
|
19 |
+
metric:
|
20 |
+
name: metrics/mAP_0.5
|
21 |
+
goal: maximize
|
22 |
+
|
23 |
+
parameters:
|
24 |
+
# hyperparameters: set either min, max range or values list
|
25 |
+
data:
|
26 |
+
value: "data/coco128.yaml"
|
27 |
+
batch_size:
|
28 |
+
values: [64]
|
29 |
+
epochs:
|
30 |
+
values: [10]
|
31 |
+
|
32 |
+
lr0:
|
33 |
+
distribution: uniform
|
34 |
+
min: 1e-5
|
35 |
+
max: 1e-1
|
36 |
+
lrf:
|
37 |
+
distribution: uniform
|
38 |
+
min: 0.01
|
39 |
+
max: 1.0
|
40 |
+
momentum:
|
41 |
+
distribution: uniform
|
42 |
+
min: 0.6
|
43 |
+
max: 0.98
|
44 |
+
weight_decay:
|
45 |
+
distribution: uniform
|
46 |
+
min: 0.0
|
47 |
+
max: 0.001
|
48 |
+
warmup_epochs:
|
49 |
+
distribution: uniform
|
50 |
+
min: 0.0
|
51 |
+
max: 5.0
|
52 |
+
warmup_momentum:
|
53 |
+
distribution: uniform
|
54 |
+
min: 0.0
|
55 |
+
max: 0.95
|
56 |
+
warmup_bias_lr:
|
57 |
+
distribution: uniform
|
58 |
+
min: 0.0
|
59 |
+
max: 0.2
|
60 |
+
box:
|
61 |
+
distribution: uniform
|
62 |
+
min: 0.02
|
63 |
+
max: 0.2
|
64 |
+
cls:
|
65 |
+
distribution: uniform
|
66 |
+
min: 0.2
|
67 |
+
max: 4.0
|
68 |
+
cls_pw:
|
69 |
+
distribution: uniform
|
70 |
+
min: 0.5
|
71 |
+
max: 2.0
|
72 |
+
obj:
|
73 |
+
distribution: uniform
|
74 |
+
min: 0.2
|
75 |
+
max: 4.0
|
76 |
+
obj_pw:
|
77 |
+
distribution: uniform
|
78 |
+
min: 0.5
|
79 |
+
max: 2.0
|
80 |
+
iou_t:
|
81 |
+
distribution: uniform
|
82 |
+
min: 0.1
|
83 |
+
max: 0.7
|
84 |
+
anchor_t:
|
85 |
+
distribution: uniform
|
86 |
+
min: 2.0
|
87 |
+
max: 8.0
|
88 |
+
fl_gamma:
|
89 |
+
distribution: uniform
|
90 |
+
min: 0.0
|
91 |
+
max: 4.0
|
92 |
+
hsv_h:
|
93 |
+
distribution: uniform
|
94 |
+
min: 0.0
|
95 |
+
max: 0.1
|
96 |
+
hsv_s:
|
97 |
+
distribution: uniform
|
98 |
+
min: 0.0
|
99 |
+
max: 0.9
|
100 |
+
hsv_v:
|
101 |
+
distribution: uniform
|
102 |
+
min: 0.0
|
103 |
+
max: 0.9
|
104 |
+
degrees:
|
105 |
+
distribution: uniform
|
106 |
+
min: 0.0
|
107 |
+
max: 45.0
|
108 |
+
translate:
|
109 |
+
distribution: uniform
|
110 |
+
min: 0.0
|
111 |
+
max: 0.9
|
112 |
+
scale:
|
113 |
+
distribution: uniform
|
114 |
+
min: 0.0
|
115 |
+
max: 0.9
|
116 |
+
shear:
|
117 |
+
distribution: uniform
|
118 |
+
min: 0.0
|
119 |
+
max: 10.0
|
120 |
+
perspective:
|
121 |
+
distribution: uniform
|
122 |
+
min: 0.0
|
123 |
+
max: 0.001
|
124 |
+
flipud:
|
125 |
+
distribution: uniform
|
126 |
+
min: 0.0
|
127 |
+
max: 1.0
|
128 |
+
fliplr:
|
129 |
+
distribution: uniform
|
130 |
+
min: 0.0
|
131 |
+
max: 1.0
|
132 |
+
mosaic:
|
133 |
+
distribution: uniform
|
134 |
+
min: 0.0
|
135 |
+
max: 1.0
|
136 |
+
mixup:
|
137 |
+
distribution: uniform
|
138 |
+
min: 0.0
|
139 |
+
max: 1.0
|
140 |
+
copy_paste:
|
141 |
+
distribution: uniform
|
142 |
+
min: 0.0
|
143 |
+
max: 1.0
|
utils/loggers/wandb/wandb_utils.py
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities and tools for tracking runs with Weights & Biases."""
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from contextlib import contextmanager
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Dict
|
9 |
+
|
10 |
+
import yaml
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
FILE = Path(__file__).resolve()
|
14 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
15 |
+
if str(ROOT) not in sys.path:
|
16 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
17 |
+
|
18 |
+
from utils.dataloaders import LoadImagesAndLabels, img2label_paths
|
19 |
+
from utils.general import LOGGER, check_dataset, check_file
|
20 |
+
|
21 |
+
try:
|
22 |
+
import wandb
|
23 |
+
|
24 |
+
assert hasattr(wandb, '__version__') # verify package import not local dir
|
25 |
+
except (ImportError, AssertionError):
|
26 |
+
wandb = None
|
27 |
+
|
28 |
+
RANK = int(os.getenv('RANK', -1))
|
29 |
+
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
30 |
+
|
31 |
+
|
32 |
+
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
|
33 |
+
return from_string[len(prefix):]
|
34 |
+
|
35 |
+
|
36 |
+
def check_wandb_config_file(data_config_file):
|
37 |
+
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
|
38 |
+
if Path(wandb_config).is_file():
|
39 |
+
return wandb_config
|
40 |
+
return data_config_file
|
41 |
+
|
42 |
+
|
43 |
+
def check_wandb_dataset(data_file):
|
44 |
+
is_trainset_wandb_artifact = False
|
45 |
+
is_valset_wandb_artifact = False
|
46 |
+
if isinstance(data_file, dict):
|
47 |
+
# In that case another dataset manager has already processed it and we don't have to
|
48 |
+
return data_file
|
49 |
+
if check_file(data_file) and data_file.endswith('.yaml'):
|
50 |
+
with open(data_file, errors='ignore') as f:
|
51 |
+
data_dict = yaml.safe_load(f)
|
52 |
+
is_trainset_wandb_artifact = isinstance(data_dict['train'],
|
53 |
+
str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)
|
54 |
+
is_valset_wandb_artifact = isinstance(data_dict['val'],
|
55 |
+
str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)
|
56 |
+
if is_trainset_wandb_artifact or is_valset_wandb_artifact:
|
57 |
+
return data_dict
|
58 |
+
else:
|
59 |
+
return check_dataset(data_file)
|
60 |
+
|
61 |
+
|
62 |
+
def get_run_info(run_path):
|
63 |
+
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
64 |
+
run_id = run_path.stem
|
65 |
+
project = run_path.parent.stem
|
66 |
+
entity = run_path.parent.parent.stem
|
67 |
+
model_artifact_name = 'run_' + run_id + '_model'
|
68 |
+
return entity, project, run_id, model_artifact_name
|
69 |
+
|
70 |
+
|
71 |
+
def check_wandb_resume(opt):
|
72 |
+
process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
|
73 |
+
if isinstance(opt.resume, str):
|
74 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
75 |
+
if RANK not in [-1, 0]: # For resuming DDP runs
|
76 |
+
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
77 |
+
api = wandb.Api()
|
78 |
+
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
|
79 |
+
modeldir = artifact.download()
|
80 |
+
opt.weights = str(Path(modeldir) / "last.pt")
|
81 |
+
return True
|
82 |
+
return None
|
83 |
+
|
84 |
+
|
85 |
+
def process_wandb_config_ddp_mode(opt):
|
86 |
+
with open(check_file(opt.data), errors='ignore') as f:
|
87 |
+
data_dict = yaml.safe_load(f) # data dict
|
88 |
+
train_dir, val_dir = None, None
|
89 |
+
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
90 |
+
api = wandb.Api()
|
91 |
+
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
|
92 |
+
train_dir = train_artifact.download()
|
93 |
+
train_path = Path(train_dir) / 'data/images/'
|
94 |
+
data_dict['train'] = str(train_path)
|
95 |
+
|
96 |
+
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
|
97 |
+
api = wandb.Api()
|
98 |
+
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
|
99 |
+
val_dir = val_artifact.download()
|
100 |
+
val_path = Path(val_dir) / 'data/images/'
|
101 |
+
data_dict['val'] = str(val_path)
|
102 |
+
if train_dir or val_dir:
|
103 |
+
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
|
104 |
+
with open(ddp_data_path, 'w') as f:
|
105 |
+
yaml.safe_dump(data_dict, f)
|
106 |
+
opt.data = ddp_data_path
|
107 |
+
|
108 |
+
|
109 |
+
class WandbLogger():
|
110 |
+
"""Log training runs, datasets, models, and predictions to Weights & Biases.
|
111 |
+
|
112 |
+
This logger sends information to W&B at wandb.ai. By default, this information
|
113 |
+
includes hyperparameters, system configuration and metrics, model metrics,
|
114 |
+
and basic data metrics and analyses.
|
115 |
+
|
116 |
+
By providing additional command line arguments to train.py, datasets,
|
117 |
+
models and predictions can also be logged.
|
118 |
+
|
119 |
+
For more on how this logger is used, see the Weights & Biases documentation:
|
120 |
+
https://docs.wandb.com/guides/integrations/yolov5
|
121 |
+
"""
|
122 |
+
|
123 |
+
def __init__(self, opt, run_id=None, job_type='Training'):
|
124 |
+
"""
|
125 |
+
- Initialize WandbLogger instance
|
126 |
+
- Upload dataset if opt.upload_dataset is True
|
127 |
+
- Setup training processes if job_type is 'Training'
|
128 |
+
|
129 |
+
arguments:
|
130 |
+
opt (namespace) -- Commandline arguments for this run
|
131 |
+
run_id (str) -- Run ID of W&B run to be resumed
|
132 |
+
job_type (str) -- To set the job_type for this run
|
133 |
+
|
134 |
+
"""
|
135 |
+
# Temporary-fix
|
136 |
+
if opt.upload_dataset:
|
137 |
+
opt.upload_dataset = False
|
138 |
+
# LOGGER.info("Uploading Dataset functionality is not being supported temporarily due to a bug.")
|
139 |
+
|
140 |
+
# Pre-training routine --
|
141 |
+
self.job_type = job_type
|
142 |
+
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
|
143 |
+
self.val_artifact, self.train_artifact = None, None
|
144 |
+
self.train_artifact_path, self.val_artifact_path = None, None
|
145 |
+
self.result_artifact = None
|
146 |
+
self.val_table, self.result_table = None, None
|
147 |
+
self.bbox_media_panel_images = []
|
148 |
+
self.val_table_path_map = None
|
149 |
+
self.max_imgs_to_log = 16
|
150 |
+
self.wandb_artifact_data_dict = None
|
151 |
+
self.data_dict = None
|
152 |
+
# It's more elegant to stick to 1 wandb.init call,
|
153 |
+
# but useful config data is overwritten in the WandbLogger's wandb.init call
|
154 |
+
if isinstance(opt.resume, str): # checks resume from artifact
|
155 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
156 |
+
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
157 |
+
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
|
158 |
+
assert wandb, 'install wandb to resume wandb runs'
|
159 |
+
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
|
160 |
+
self.wandb_run = wandb.init(id=run_id,
|
161 |
+
project=project,
|
162 |
+
entity=entity,
|
163 |
+
resume='allow',
|
164 |
+
allow_val_change=True)
|
165 |
+
opt.resume = model_artifact_name
|
166 |
+
elif self.wandb:
|
167 |
+
self.wandb_run = wandb.init(config=opt,
|
168 |
+
resume="allow",
|
169 |
+
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
170 |
+
entity=opt.entity,
|
171 |
+
name=opt.name if opt.name != 'exp' else None,
|
172 |
+
job_type=job_type,
|
173 |
+
id=run_id,
|
174 |
+
allow_val_change=True) if not wandb.run else wandb.run
|
175 |
+
if self.wandb_run:
|
176 |
+
if self.job_type == 'Training':
|
177 |
+
if opt.upload_dataset:
|
178 |
+
if not opt.resume:
|
179 |
+
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
180 |
+
|
181 |
+
if isinstance(opt.data, dict):
|
182 |
+
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
|
183 |
+
# and they will have stored the already processed dict in opt.data
|
184 |
+
self.data_dict = opt.data
|
185 |
+
elif opt.resume:
|
186 |
+
# resume from artifact
|
187 |
+
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
188 |
+
self.data_dict = dict(self.wandb_run.config.data_dict)
|
189 |
+
else: # local resume
|
190 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
191 |
+
else:
|
192 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
193 |
+
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
|
194 |
+
|
195 |
+
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
196 |
+
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True)
|
197 |
+
self.setup_training(opt)
|
198 |
+
|
199 |
+
if self.job_type == 'Dataset Creation':
|
200 |
+
self.wandb_run.config.update({"upload_dataset": True})
|
201 |
+
self.data_dict = self.check_and_upload_dataset(opt)
|
202 |
+
|
203 |
+
def check_and_upload_dataset(self, opt):
|
204 |
+
"""
|
205 |
+
Check if the dataset format is compatible and upload it as W&B artifact
|
206 |
+
|
207 |
+
arguments:
|
208 |
+
opt (namespace)-- Commandline arguments for current run
|
209 |
+
|
210 |
+
returns:
|
211 |
+
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
212 |
+
"""
|
213 |
+
assert wandb, 'Install wandb to upload dataset'
|
214 |
+
config_path = self.log_dataset_artifact(opt.data, opt.single_cls,
|
215 |
+
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
216 |
+
with open(config_path, errors='ignore') as f:
|
217 |
+
wandb_data_dict = yaml.safe_load(f)
|
218 |
+
return wandb_data_dict
|
219 |
+
|
220 |
+
def setup_training(self, opt):
|
221 |
+
"""
|
222 |
+
Setup the necessary processes for training YOLO models:
|
223 |
+
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
224 |
+
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
225 |
+
- Setup log_dict, initialize bbox_interval
|
226 |
+
|
227 |
+
arguments:
|
228 |
+
opt (namespace) -- commandline arguments for this run
|
229 |
+
|
230 |
+
"""
|
231 |
+
self.log_dict, self.current_epoch = {}, 0
|
232 |
+
self.bbox_interval = opt.bbox_interval
|
233 |
+
if isinstance(opt.resume, str):
|
234 |
+
modeldir, _ = self.download_model_artifact(opt)
|
235 |
+
if modeldir:
|
236 |
+
self.weights = Path(modeldir) / "last.pt"
|
237 |
+
config = self.wandb_run.config
|
238 |
+
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
|
239 |
+
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
|
240 |
+
config.hyp, config.imgsz
|
241 |
+
data_dict = self.data_dict
|
242 |
+
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
243 |
+
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(
|
244 |
+
data_dict.get('train'), opt.artifact_alias)
|
245 |
+
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(
|
246 |
+
data_dict.get('val'), opt.artifact_alias)
|
247 |
+
|
248 |
+
if self.train_artifact_path is not None:
|
249 |
+
train_path = Path(self.train_artifact_path) / 'data/images/'
|
250 |
+
data_dict['train'] = str(train_path)
|
251 |
+
if self.val_artifact_path is not None:
|
252 |
+
val_path = Path(self.val_artifact_path) / 'data/images/'
|
253 |
+
data_dict['val'] = str(val_path)
|
254 |
+
|
255 |
+
if self.val_artifact is not None:
|
256 |
+
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
257 |
+
columns = ["epoch", "id", "ground truth", "prediction"]
|
258 |
+
columns.extend(self.data_dict['names'])
|
259 |
+
self.result_table = wandb.Table(columns)
|
260 |
+
self.val_table = self.val_artifact.get("val")
|
261 |
+
if self.val_table_path_map is None:
|
262 |
+
self.map_val_table_path()
|
263 |
+
if opt.bbox_interval == -1:
|
264 |
+
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
265 |
+
if opt.evolve or opt.noplots:
|
266 |
+
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
|
267 |
+
train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
|
268 |
+
# Update the the data_dict to point to local artifacts dir
|
269 |
+
if train_from_artifact:
|
270 |
+
self.data_dict = data_dict
|
271 |
+
|
272 |
+
def download_dataset_artifact(self, path, alias):
|
273 |
+
"""
|
274 |
+
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
275 |
+
|
276 |
+
arguments:
|
277 |
+
path -- path of the dataset to be used for training
|
278 |
+
alias (str)-- alias of the artifact to be download/used for training
|
279 |
+
|
280 |
+
returns:
|
281 |
+
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
282 |
+
is found otherwise returns (None, None)
|
283 |
+
"""
|
284 |
+
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
285 |
+
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
286 |
+
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
|
287 |
+
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
288 |
+
datadir = dataset_artifact.download()
|
289 |
+
return datadir, dataset_artifact
|
290 |
+
return None, None
|
291 |
+
|
292 |
+
def download_model_artifact(self, opt):
|
293 |
+
"""
|
294 |
+
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
295 |
+
|
296 |
+
arguments:
|
297 |
+
opt (namespace) -- Commandline arguments for this run
|
298 |
+
"""
|
299 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
300 |
+
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
301 |
+
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
302 |
+
modeldir = model_artifact.download()
|
303 |
+
# epochs_trained = model_artifact.metadata.get('epochs_trained')
|
304 |
+
total_epochs = model_artifact.metadata.get('total_epochs')
|
305 |
+
is_finished = total_epochs is None
|
306 |
+
assert not is_finished, 'training is finished, can only resume incomplete runs.'
|
307 |
+
return modeldir, model_artifact
|
308 |
+
return None, None
|
309 |
+
|
310 |
+
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
311 |
+
"""
|
312 |
+
Log the model checkpoint as W&B artifact
|
313 |
+
|
314 |
+
arguments:
|
315 |
+
path (Path) -- Path of directory containing the checkpoints
|
316 |
+
opt (namespace) -- Command line arguments for this run
|
317 |
+
epoch (int) -- Current epoch number
|
318 |
+
fitness_score (float) -- fitness score for current epoch
|
319 |
+
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
320 |
+
"""
|
321 |
+
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
|
322 |
+
type='model',
|
323 |
+
metadata={
|
324 |
+
'original_url': str(path),
|
325 |
+
'epochs_trained': epoch + 1,
|
326 |
+
'save period': opt.save_period,
|
327 |
+
'project': opt.project,
|
328 |
+
'total_epochs': opt.epochs,
|
329 |
+
'fitness_score': fitness_score})
|
330 |
+
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
331 |
+
wandb.log_artifact(model_artifact,
|
332 |
+
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
|
333 |
+
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
|
334 |
+
|
335 |
+
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
336 |
+
"""
|
337 |
+
Log the dataset as W&B artifact and return the new data file with W&B links
|
338 |
+
|
339 |
+
arguments:
|
340 |
+
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
341 |
+
single_class (boolean) -- train multi-class data as single-class
|
342 |
+
project (str) -- project name. Used to construct the artifact path
|
343 |
+
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
344 |
+
file with _wandb postfix. Eg -> data_wandb.yaml
|
345 |
+
|
346 |
+
returns:
|
347 |
+
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
348 |
+
"""
|
349 |
+
upload_dataset = self.wandb_run.config.upload_dataset
|
350 |
+
log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
|
351 |
+
self.data_dict = check_dataset(data_file) # parse and check
|
352 |
+
data = dict(self.data_dict)
|
353 |
+
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
354 |
+
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
355 |
+
|
356 |
+
# log train set
|
357 |
+
if not log_val_only:
|
358 |
+
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
|
359 |
+
names,
|
360 |
+
name='train') if data.get('train') else None
|
361 |
+
if data.get('train'):
|
362 |
+
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
|
363 |
+
|
364 |
+
self.val_artifact = self.create_dataset_table(
|
365 |
+
LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
|
366 |
+
if data.get('val'):
|
367 |
+
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
|
368 |
+
|
369 |
+
path = Path(data_file)
|
370 |
+
# create a _wandb.yaml file with artifacts links if both train and test set are logged
|
371 |
+
if not log_val_only:
|
372 |
+
path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path
|
373 |
+
path = ROOT / 'data' / path
|
374 |
+
data.pop('download', None)
|
375 |
+
data.pop('path', None)
|
376 |
+
with open(path, 'w') as f:
|
377 |
+
yaml.safe_dump(data, f)
|
378 |
+
LOGGER.info(f"Created dataset config file {path}")
|
379 |
+
|
380 |
+
if self.job_type == 'Training': # builds correct artifact pipeline graph
|
381 |
+
if not log_val_only:
|
382 |
+
self.wandb_run.log_artifact(
|
383 |
+
self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED!
|
384 |
+
self.wandb_run.use_artifact(self.val_artifact)
|
385 |
+
self.val_artifact.wait()
|
386 |
+
self.val_table = self.val_artifact.get('val')
|
387 |
+
self.map_val_table_path()
|
388 |
+
else:
|
389 |
+
self.wandb_run.log_artifact(self.train_artifact)
|
390 |
+
self.wandb_run.log_artifact(self.val_artifact)
|
391 |
+
return path
|
392 |
+
|
393 |
+
def map_val_table_path(self):
|
394 |
+
"""
|
395 |
+
Map the validation dataset Table like name of file -> it's id in the W&B Table.
|
396 |
+
Useful for - referencing artifacts for evaluation.
|
397 |
+
"""
|
398 |
+
self.val_table_path_map = {}
|
399 |
+
LOGGER.info("Mapping dataset")
|
400 |
+
for i, data in enumerate(tqdm(self.val_table.data)):
|
401 |
+
self.val_table_path_map[data[3]] = data[0]
|
402 |
+
|
403 |
+
def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
|
404 |
+
"""
|
405 |
+
Create and return W&B artifact containing W&B Table of the dataset.
|
406 |
+
|
407 |
+
arguments:
|
408 |
+
dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
409 |
+
class_to_id -- hash map that maps class ids to labels
|
410 |
+
name -- name of the artifact
|
411 |
+
|
412 |
+
returns:
|
413 |
+
dataset artifact to be logged or used
|
414 |
+
"""
|
415 |
+
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
416 |
+
artifact = wandb.Artifact(name=name, type="dataset")
|
417 |
+
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
418 |
+
img_files = tqdm(dataset.im_files) if not img_files else img_files
|
419 |
+
for img_file in img_files:
|
420 |
+
if Path(img_file).is_dir():
|
421 |
+
artifact.add_dir(img_file, name='data/images')
|
422 |
+
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
|
423 |
+
artifact.add_dir(labels_path, name='data/labels')
|
424 |
+
else:
|
425 |
+
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
|
426 |
+
label_file = Path(img2label_paths([img_file])[0])
|
427 |
+
artifact.add_file(str(label_file), name='data/labels/' +
|
428 |
+
label_file.name) if label_file.exists() else None
|
429 |
+
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
|
430 |
+
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
431 |
+
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
|
432 |
+
box_data, img_classes = [], {}
|
433 |
+
for cls, *xywh in labels[:, 1:].tolist():
|
434 |
+
cls = int(cls)
|
435 |
+
box_data.append({
|
436 |
+
"position": {
|
437 |
+
"middle": [xywh[0], xywh[1]],
|
438 |
+
"width": xywh[2],
|
439 |
+
"height": xywh[3]},
|
440 |
+
"class_id": cls,
|
441 |
+
"box_caption": "%s" % (class_to_id[cls])})
|
442 |
+
img_classes[cls] = class_to_id[cls]
|
443 |
+
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
444 |
+
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
|
445 |
+
Path(paths).name)
|
446 |
+
artifact.add(table, name)
|
447 |
+
return artifact
|
448 |
+
|
449 |
+
def log_training_progress(self, predn, path, names):
|
450 |
+
"""
|
451 |
+
Build evaluation Table. Uses reference from validation dataset table.
|
452 |
+
|
453 |
+
arguments:
|
454 |
+
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
455 |
+
path (str): local path of the current evaluation image
|
456 |
+
names (dict(int, str)): hash map that maps class ids to labels
|
457 |
+
"""
|
458 |
+
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
459 |
+
box_data = []
|
460 |
+
avg_conf_per_class = [0] * len(self.data_dict['names'])
|
461 |
+
pred_class_count = {}
|
462 |
+
for *xyxy, conf, cls in predn.tolist():
|
463 |
+
if conf >= 0.25:
|
464 |
+
cls = int(cls)
|
465 |
+
box_data.append({
|
466 |
+
"position": {
|
467 |
+
"minX": xyxy[0],
|
468 |
+
"minY": xyxy[1],
|
469 |
+
"maxX": xyxy[2],
|
470 |
+
"maxY": xyxy[3]},
|
471 |
+
"class_id": cls,
|
472 |
+
"box_caption": f"{names[cls]} {conf:.3f}",
|
473 |
+
"scores": {
|
474 |
+
"class_score": conf},
|
475 |
+
"domain": "pixel"})
|
476 |
+
avg_conf_per_class[cls] += conf
|
477 |
+
|
478 |
+
if cls in pred_class_count:
|
479 |
+
pred_class_count[cls] += 1
|
480 |
+
else:
|
481 |
+
pred_class_count[cls] = 1
|
482 |
+
|
483 |
+
for pred_class in pred_class_count.keys():
|
484 |
+
avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
|
485 |
+
|
486 |
+
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
487 |
+
id = self.val_table_path_map[Path(path).name]
|
488 |
+
self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1],
|
489 |
+
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
|
490 |
+
*avg_conf_per_class)
|
491 |
+
|
492 |
+
def val_one_image(self, pred, predn, path, names, im):
|
493 |
+
"""
|
494 |
+
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
495 |
+
|
496 |
+
arguments:
|
497 |
+
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
498 |
+
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
499 |
+
path (str): local path of the current evaluation image
|
500 |
+
"""
|
501 |
+
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
|
502 |
+
self.log_training_progress(predn, path, names)
|
503 |
+
|
504 |
+
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
|
505 |
+
if self.current_epoch % self.bbox_interval == 0:
|
506 |
+
box_data = [{
|
507 |
+
"position": {
|
508 |
+
"minX": xyxy[0],
|
509 |
+
"minY": xyxy[1],
|
510 |
+
"maxX": xyxy[2],
|
511 |
+
"maxY": xyxy[3]},
|
512 |
+
"class_id": int(cls),
|
513 |
+
"box_caption": f"{names[int(cls)]} {conf:.3f}",
|
514 |
+
"scores": {
|
515 |
+
"class_score": conf},
|
516 |
+
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
517 |
+
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
518 |
+
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
519 |
+
|
520 |
+
def log(self, log_dict):
|
521 |
+
"""
|
522 |
+
save the metrics to the logging dictionary
|
523 |
+
|
524 |
+
arguments:
|
525 |
+
log_dict (Dict) -- metrics/media to be logged in current step
|
526 |
+
"""
|
527 |
+
if self.wandb_run:
|
528 |
+
for key, value in log_dict.items():
|
529 |
+
self.log_dict[key] = value
|
530 |
+
|
531 |
+
def end_epoch(self, best_result=False):
|
532 |
+
"""
|
533 |
+
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
534 |
+
|
535 |
+
arguments:
|
536 |
+
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
537 |
+
"""
|
538 |
+
if self.wandb_run:
|
539 |
+
with all_logging_disabled():
|
540 |
+
if self.bbox_media_panel_images:
|
541 |
+
self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
|
542 |
+
try:
|
543 |
+
wandb.log(self.log_dict)
|
544 |
+
except BaseException as e:
|
545 |
+
LOGGER.info(
|
546 |
+
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
|
547 |
+
)
|
548 |
+
self.wandb_run.finish()
|
549 |
+
self.wandb_run = None
|
550 |
+
|
551 |
+
self.log_dict = {}
|
552 |
+
self.bbox_media_panel_images = []
|
553 |
+
if self.result_artifact:
|
554 |
+
self.result_artifact.add(self.result_table, 'result')
|
555 |
+
wandb.log_artifact(self.result_artifact,
|
556 |
+
aliases=[
|
557 |
+
'latest', 'last', 'epoch ' + str(self.current_epoch),
|
558 |
+
('best' if best_result else '')])
|
559 |
+
|
560 |
+
wandb.log({"evaluation": self.result_table})
|
561 |
+
columns = ["epoch", "id", "ground truth", "prediction"]
|
562 |
+
columns.extend(self.data_dict['names'])
|
563 |
+
self.result_table = wandb.Table(columns)
|
564 |
+
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
565 |
+
|
566 |
+
def finish_run(self):
|
567 |
+
"""
|
568 |
+
Log metrics if any and finish the current W&B run
|
569 |
+
"""
|
570 |
+
if self.wandb_run:
|
571 |
+
if self.log_dict:
|
572 |
+
with all_logging_disabled():
|
573 |
+
wandb.log(self.log_dict)
|
574 |
+
wandb.run.finish()
|
575 |
+
|
576 |
+
|
577 |
+
@contextmanager
|
578 |
+
def all_logging_disabled(highest_level=logging.CRITICAL):
|
579 |
+
""" source - https://gist.github.com/simon-weber/7853144
|
580 |
+
A context manager that will prevent any logging messages triggered during the body from being processed.
|
581 |
+
:param highest_level: the maximum logging level in use.
|
582 |
+
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
583 |
+
"""
|
584 |
+
previous_level = logging.root.manager.disable
|
585 |
+
logging.disable(highest_level)
|
586 |
+
try:
|
587 |
+
yield
|
588 |
+
finally:
|
589 |
+
logging.disable(previous_level)
|
utils/loss.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from utils.metrics import bbox_iou
|
6 |
+
from utils.torch_utils import de_parallel
|
7 |
+
|
8 |
+
|
9 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
10 |
+
# return positive, negative label smoothing BCE targets
|
11 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
12 |
+
|
13 |
+
|
14 |
+
class BCEBlurWithLogitsLoss(nn.Module):
|
15 |
+
# BCEwithLogitLoss() with reduced missing label effects.
|
16 |
+
def __init__(self, alpha=0.05):
|
17 |
+
super().__init__()
|
18 |
+
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
19 |
+
self.alpha = alpha
|
20 |
+
|
21 |
+
def forward(self, pred, true):
|
22 |
+
loss = self.loss_fcn(pred, true)
|
23 |
+
pred = torch.sigmoid(pred) # prob from logits
|
24 |
+
dx = pred - true # reduce only missing label effects
|
25 |
+
# dx = (pred - true).abs() # reduce missing label and false label effects
|
26 |
+
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
27 |
+
loss *= alpha_factor
|
28 |
+
return loss.mean()
|
29 |
+
|
30 |
+
|
31 |
+
class FocalLoss(nn.Module):
|
32 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
33 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
34 |
+
super().__init__()
|
35 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
36 |
+
self.gamma = gamma
|
37 |
+
self.alpha = alpha
|
38 |
+
self.reduction = loss_fcn.reduction
|
39 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
40 |
+
|
41 |
+
def forward(self, pred, true):
|
42 |
+
loss = self.loss_fcn(pred, true)
|
43 |
+
# p_t = torch.exp(-loss)
|
44 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
45 |
+
|
46 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
47 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
48 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
49 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
50 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
51 |
+
loss *= alpha_factor * modulating_factor
|
52 |
+
|
53 |
+
if self.reduction == 'mean':
|
54 |
+
return loss.mean()
|
55 |
+
elif self.reduction == 'sum':
|
56 |
+
return loss.sum()
|
57 |
+
else: # 'none'
|
58 |
+
return loss
|
59 |
+
|
60 |
+
|
61 |
+
class QFocalLoss(nn.Module):
|
62 |
+
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
63 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
64 |
+
super().__init__()
|
65 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
66 |
+
self.gamma = gamma
|
67 |
+
self.alpha = alpha
|
68 |
+
self.reduction = loss_fcn.reduction
|
69 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
70 |
+
|
71 |
+
def forward(self, pred, true):
|
72 |
+
loss = self.loss_fcn(pred, true)
|
73 |
+
|
74 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
75 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
76 |
+
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
77 |
+
loss *= alpha_factor * modulating_factor
|
78 |
+
|
79 |
+
if self.reduction == 'mean':
|
80 |
+
return loss.mean()
|
81 |
+
elif self.reduction == 'sum':
|
82 |
+
return loss.sum()
|
83 |
+
else: # 'none'
|
84 |
+
return loss
|
85 |
+
|
86 |
+
|
87 |
+
class ComputeLoss:
|
88 |
+
sort_obj_iou = False
|
89 |
+
|
90 |
+
# Compute losses
|
91 |
+
def __init__(self, model, autobalance=False):
|
92 |
+
device = next(model.parameters()).device # get model device
|
93 |
+
h = model.hyp # hyperparameters
|
94 |
+
|
95 |
+
# Define criteria
|
96 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
97 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
98 |
+
|
99 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
100 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
101 |
+
|
102 |
+
# Focal loss
|
103 |
+
g = h['fl_gamma'] # focal loss gamma
|
104 |
+
if g > 0:
|
105 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
106 |
+
|
107 |
+
m = de_parallel(model).model[-1] # Detect() module
|
108 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
109 |
+
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
110 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
111 |
+
self.nc = m.nc # number of classes
|
112 |
+
self.nl = m.nl # number of layers
|
113 |
+
self.anchors = m.anchors
|
114 |
+
self.device = device
|
115 |
+
|
116 |
+
def __call__(self, p, targets): # predictions, targets
|
117 |
+
bs = p[0].shape[0] # batch size
|
118 |
+
loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses
|
119 |
+
tcls, tbox, indices = self.build_targets(p, targets) # targets
|
120 |
+
|
121 |
+
# Losses
|
122 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
123 |
+
b, gj, gi = indices[i] # image, anchor, gridy, gridx
|
124 |
+
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # tgt obj
|
125 |
+
|
126 |
+
n_labels = b.shape[0] # number of labels
|
127 |
+
if n_labels:
|
128 |
+
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
|
129 |
+
pxy, pwh, _, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
|
130 |
+
|
131 |
+
# Regression
|
132 |
+
# pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
133 |
+
# pwh = (0.0 + (pwh - 1.09861).sigmoid() * 4) * anchors[i]
|
134 |
+
# pwh = (0.33333 + (pwh - 1.09861).sigmoid() * 2.66667) * anchors[i]
|
135 |
+
# pwh = (0.25 + (pwh - 1.38629).sigmoid() * 3.75) * anchors[i]
|
136 |
+
# pwh = (0.20 + (pwh - 1.60944).sigmoid() * 4.8) * anchors[i]
|
137 |
+
# pwh = (0.16667 + (pwh - 1.79175).sigmoid() * 5.83333) * anchors[i]
|
138 |
+
pxy = pxy.sigmoid() * 1.6 - 0.3
|
139 |
+
pwh = (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]
|
140 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
141 |
+
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
142 |
+
loss[0] += (1.0 - iou).mean() # box loss
|
143 |
+
|
144 |
+
# Objectness
|
145 |
+
iou = iou.detach().clamp(0).type(tobj.dtype)
|
146 |
+
if self.sort_obj_iou:
|
147 |
+
j = iou.argsort()
|
148 |
+
b, gj, gi, iou = b[j], gj[j], gi[j], iou[j]
|
149 |
+
if self.gr < 1:
|
150 |
+
iou = (1.0 - self.gr) + self.gr * iou
|
151 |
+
tobj[b, gj, gi] = iou # iou ratio
|
152 |
+
|
153 |
+
# Classification
|
154 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
155 |
+
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
156 |
+
t[range(n_labels), tcls[i]] = self.cp
|
157 |
+
loss[2] += self.BCEcls(pcls, t) # cls loss
|
158 |
+
|
159 |
+
obji = self.BCEobj(pi[:, 4], tobj)
|
160 |
+
loss[1] += obji * self.balance[i] # obj loss
|
161 |
+
if self.autobalance:
|
162 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
163 |
+
|
164 |
+
if self.autobalance:
|
165 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
166 |
+
loss[0] *= self.hyp['box']
|
167 |
+
loss[1] *= self.hyp['obj']
|
168 |
+
loss[2] *= self.hyp['cls']
|
169 |
+
return loss.sum() * bs, loss.detach() # [box, obj, cls] losses
|
170 |
+
|
171 |
+
def build_targets(self, p, targets):
|
172 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
173 |
+
nt = targets.shape[0] # number of anchors, targets
|
174 |
+
tcls, tbox, indices = [], [], []
|
175 |
+
gain = torch.ones(6, device=self.device) # normalized to gridspace gain
|
176 |
+
|
177 |
+
g = 0.3 # bias
|
178 |
+
off = torch.tensor(
|
179 |
+
[
|
180 |
+
[0, 0],
|
181 |
+
[1, 0],
|
182 |
+
[0, 1],
|
183 |
+
[-1, 0],
|
184 |
+
[0, -1], # j,k,l,m
|
185 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
186 |
+
],
|
187 |
+
device=self.device).float() * g # offsets
|
188 |
+
|
189 |
+
for i in range(self.nl):
|
190 |
+
shape = p[i].shape
|
191 |
+
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
192 |
+
|
193 |
+
# Match targets to anchors
|
194 |
+
t = targets * gain # shape(3,n,7)
|
195 |
+
if nt:
|
196 |
+
# Matches
|
197 |
+
r = t[..., 4:6] / self.anchors[i] # wh ratio
|
198 |
+
j = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare
|
199 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
200 |
+
t = t[j] # filter
|
201 |
+
|
202 |
+
# Offsets
|
203 |
+
gxy = t[:, 2:4] # grid xy
|
204 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
205 |
+
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
206 |
+
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
207 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
208 |
+
t = t.repeat((5, 1, 1))[j]
|
209 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
210 |
+
else:
|
211 |
+
t = targets[0]
|
212 |
+
offsets = 0
|
213 |
+
|
214 |
+
# Define
|
215 |
+
bc, gxy, gwh = t.chunk(3, 1) # (image, class), grid xy, grid wh
|
216 |
+
b, c = bc.long().T # image, class
|
217 |
+
gij = (gxy - offsets).long()
|
218 |
+
gi, gj = gij.T # grid indices
|
219 |
+
|
220 |
+
# Append
|
221 |
+
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices
|
222 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
223 |
+
tcls.append(c) # class
|
224 |
+
|
225 |
+
return tcls, tbox, indices
|
226 |
+
|
227 |
+
|
228 |
+
class ComputeLoss_NEW:
|
229 |
+
sort_obj_iou = False
|
230 |
+
|
231 |
+
# Compute losses
|
232 |
+
def __init__(self, model, autobalance=False):
|
233 |
+
device = next(model.parameters()).device # get model device
|
234 |
+
h = model.hyp # hyperparameters
|
235 |
+
|
236 |
+
# Define criteria
|
237 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
238 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
239 |
+
|
240 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
241 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
242 |
+
|
243 |
+
# Focal loss
|
244 |
+
g = h['fl_gamma'] # focal loss gamma
|
245 |
+
if g > 0:
|
246 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
247 |
+
|
248 |
+
m = de_parallel(model).model[-1] # Detect() module
|
249 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
250 |
+
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
251 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
252 |
+
self.nc = m.nc # number of classes
|
253 |
+
self.nl = m.nl # number of layers
|
254 |
+
self.anchors = m.anchors
|
255 |
+
self.device = device
|
256 |
+
self.BCE_base = nn.BCEWithLogitsLoss(reduction='none')
|
257 |
+
|
258 |
+
def __call__(self, p, targets): # predictions, targets
|
259 |
+
tcls, tbox, indices = self.build_targets(p, targets) # targets
|
260 |
+
bs = p[0].shape[0] # batch size
|
261 |
+
n_labels = targets.shape[0] # number of labels
|
262 |
+
loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses
|
263 |
+
|
264 |
+
# Compute all losses
|
265 |
+
all_loss = []
|
266 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
267 |
+
b, gj, gi = indices[i] # image, anchor, gridy, gridx
|
268 |
+
if n_labels:
|
269 |
+
pxy, pwh, pobj, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 2) # target-subset of predictions
|
270 |
+
|
271 |
+
# Regression
|
272 |
+
pbox = torch.cat((pxy.sigmoid() * 1.6 - 0.3, (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]), 2)
|
273 |
+
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(predicted_box, target_box)
|
274 |
+
obj_target = iou.detach().clamp(0).type(pi.dtype) # objectness targets
|
275 |
+
|
276 |
+
all_loss.append([(1.0 - iou) * self.hyp['box'],
|
277 |
+
self.BCE_base(pobj.squeeze(), torch.ones_like(obj_target)) * self.hyp['obj'],
|
278 |
+
self.BCE_base(pcls, F.one_hot(tcls[i], self.nc).float()).mean(2) * self.hyp['cls'],
|
279 |
+
obj_target,
|
280 |
+
tbox[i][..., 2] > 0.0]) # valid
|
281 |
+
|
282 |
+
# Lowest 3 losses per label
|
283 |
+
n_assign = 4 # top n matches
|
284 |
+
cat_loss = [torch.cat(x, 1) for x in zip(*all_loss)]
|
285 |
+
ij = torch.zeros_like(cat_loss[0]).bool() # top 3 mask
|
286 |
+
sum_loss = cat_loss[0] + cat_loss[2]
|
287 |
+
for col in torch.argsort(sum_loss, dim=1).T[:n_assign]:
|
288 |
+
# ij[range(n_labels), col] = True
|
289 |
+
ij[range(n_labels), col] = cat_loss[4][range(n_labels), col]
|
290 |
+
loss[0] = cat_loss[0][ij].mean() * self.nl # box loss
|
291 |
+
loss[2] = cat_loss[2][ij].mean() * self.nl # cls loss
|
292 |
+
|
293 |
+
# Obj loss
|
294 |
+
for i, (h, pi) in enumerate(zip(ij.chunk(self.nl, 1), p)): # layer index, layer predictions
|
295 |
+
b, gj, gi = indices[i] # image, anchor, gridy, gridx
|
296 |
+
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # obj
|
297 |
+
if n_labels: # if any labels
|
298 |
+
tobj[b[h], gj[h], gi[h]] = all_loss[i][3][h]
|
299 |
+
loss[1] += self.BCEobj(pi[:, 4], tobj) * (self.balance[i] * self.hyp['obj'])
|
300 |
+
|
301 |
+
return loss.sum() * bs, loss.detach() # [box, obj, cls] losses
|
302 |
+
|
303 |
+
def build_targets(self, p, targets):
|
304 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
305 |
+
nt = targets.shape[0] # number of anchors, targets
|
306 |
+
tcls, tbox, indices = [], [], []
|
307 |
+
gain = torch.ones(6, device=self.device) # normalized to gridspace gain
|
308 |
+
|
309 |
+
g = 0.3 # bias
|
310 |
+
off = torch.tensor(
|
311 |
+
[
|
312 |
+
[0, 0],
|
313 |
+
[1, 0],
|
314 |
+
[0, 1],
|
315 |
+
[-1, 0],
|
316 |
+
[0, -1], # j,k,l,m
|
317 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
318 |
+
],
|
319 |
+
device=self.device).float() # offsets
|
320 |
+
|
321 |
+
for i in range(self.nl):
|
322 |
+
shape = p[i].shape
|
323 |
+
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
324 |
+
|
325 |
+
# Match targets to anchors
|
326 |
+
t = targets * gain # shape(3,n,7)
|
327 |
+
if nt:
|
328 |
+
# # Matches
|
329 |
+
r = t[..., 4:6] / self.anchors[i] # wh ratio
|
330 |
+
a = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare
|
331 |
+
# a = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
332 |
+
# t = t[a] # filter
|
333 |
+
|
334 |
+
# # Offsets
|
335 |
+
gxy = t[:, 2:4] # grid xy
|
336 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
337 |
+
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
338 |
+
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
339 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m)) & a
|
340 |
+
t = t.repeat((5, 1, 1))
|
341 |
+
offsets = torch.zeros_like(gxy)[None] + off[:, None]
|
342 |
+
t[..., 4:6][~j] = 0.0 # move unsuitable targets far away
|
343 |
+
else:
|
344 |
+
t = targets[0]
|
345 |
+
offsets = 0
|
346 |
+
|
347 |
+
# Define
|
348 |
+
bc, gxy, gwh = t.chunk(3, 2) # (image, class), grid xy, grid wh
|
349 |
+
b, c = bc.long().transpose(0, 2).contiguous() # image, class
|
350 |
+
gij = (gxy - offsets).long()
|
351 |
+
gi, gj = gij.transpose(0, 2).contiguous() # grid indices
|
352 |
+
|
353 |
+
# Append
|
354 |
+
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices
|
355 |
+
tbox.append(torch.cat((gxy - gij, gwh), 2).permute(1, 0, 2).contiguous()) # box
|
356 |
+
tcls.append(c) # class
|
357 |
+
|
358 |
+
# # Unique
|
359 |
+
# n1 = torch.cat((b.view(-1, 1), tbox[i].view(-1, 4)), 1).shape[0]
|
360 |
+
# n2 = tbox[i].view(-1, 4).unique(dim=0).shape[0]
|
361 |
+
# print(f'targets-unique {n1}-{n2} diff={n1-n2}')
|
362 |
+
|
363 |
+
return tcls, tbox, indices
|
utils/loss_tal.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from utils.general import xywh2xyxy
|
8 |
+
from utils.metrics import bbox_iou
|
9 |
+
from utils.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
|
10 |
+
from utils.tal.assigner import TaskAlignedAssigner
|
11 |
+
from utils.torch_utils import de_parallel
|
12 |
+
|
13 |
+
|
14 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
15 |
+
# return positive, negative label smoothing BCE targets
|
16 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
17 |
+
|
18 |
+
|
19 |
+
class VarifocalLoss(nn.Module):
|
20 |
+
# Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
|
21 |
+
def __init__(self):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
|
25 |
+
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
26 |
+
with torch.cuda.amp.autocast(enabled=False):
|
27 |
+
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
|
28 |
+
reduction="none") * weight).sum()
|
29 |
+
return loss
|
30 |
+
|
31 |
+
|
32 |
+
class FocalLoss(nn.Module):
|
33 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
34 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
35 |
+
super().__init__()
|
36 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
37 |
+
self.gamma = gamma
|
38 |
+
self.alpha = alpha
|
39 |
+
self.reduction = loss_fcn.reduction
|
40 |
+
self.loss_fcn.reduction = "none" # required to apply FL to each element
|
41 |
+
|
42 |
+
def forward(self, pred, true):
|
43 |
+
loss = self.loss_fcn(pred, true)
|
44 |
+
# p_t = torch.exp(-loss)
|
45 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
46 |
+
|
47 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
48 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
49 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
50 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
51 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
52 |
+
loss *= alpha_factor * modulating_factor
|
53 |
+
|
54 |
+
if self.reduction == "mean":
|
55 |
+
return loss.mean()
|
56 |
+
elif self.reduction == "sum":
|
57 |
+
return loss.sum()
|
58 |
+
else: # 'none'
|
59 |
+
return loss
|
60 |
+
|
61 |
+
|
62 |
+
class BboxLoss(nn.Module):
|
63 |
+
def __init__(self, reg_max, use_dfl=False):
|
64 |
+
super().__init__()
|
65 |
+
self.reg_max = reg_max
|
66 |
+
self.use_dfl = use_dfl
|
67 |
+
|
68 |
+
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
|
69 |
+
# iou loss
|
70 |
+
bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
|
71 |
+
pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
|
72 |
+
target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
|
73 |
+
bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
|
74 |
+
|
75 |
+
iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
|
76 |
+
loss_iou = 1.0 - iou
|
77 |
+
|
78 |
+
loss_iou *= bbox_weight
|
79 |
+
loss_iou = loss_iou.sum() / target_scores_sum
|
80 |
+
|
81 |
+
# dfl loss
|
82 |
+
if self.use_dfl:
|
83 |
+
dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
|
84 |
+
pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
|
85 |
+
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
|
86 |
+
target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
|
87 |
+
loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
|
88 |
+
loss_dfl = loss_dfl.sum() / target_scores_sum
|
89 |
+
else:
|
90 |
+
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
|
91 |
+
|
92 |
+
return loss_iou, loss_dfl, iou
|
93 |
+
|
94 |
+
def _df_loss(self, pred_dist, target):
|
95 |
+
target_left = target.to(torch.long)
|
96 |
+
target_right = target_left + 1
|
97 |
+
weight_left = target_right.to(torch.float) - target
|
98 |
+
weight_right = 1 - weight_left
|
99 |
+
loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
|
100 |
+
target_left.shape) * weight_left
|
101 |
+
loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
|
102 |
+
reduction="none").view(target_left.shape) * weight_right
|
103 |
+
return (loss_left + loss_right).mean(-1, keepdim=True)
|
104 |
+
|
105 |
+
|
106 |
+
class ComputeLoss:
|
107 |
+
# Compute losses
|
108 |
+
def __init__(self, model, use_dfl=True):
|
109 |
+
device = next(model.parameters()).device # get model device
|
110 |
+
h = model.hyp # hyperparameters
|
111 |
+
|
112 |
+
# Define criteria
|
113 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
|
114 |
+
|
115 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
116 |
+
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
|
117 |
+
|
118 |
+
# Focal loss
|
119 |
+
g = h["fl_gamma"] # focal loss gamma
|
120 |
+
if g > 0:
|
121 |
+
BCEcls = FocalLoss(BCEcls, g)
|
122 |
+
|
123 |
+
m = de_parallel(model).model[-1] # Detect() module
|
124 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
125 |
+
self.BCEcls = BCEcls
|
126 |
+
self.hyp = h
|
127 |
+
self.stride = m.stride # model strides
|
128 |
+
self.nc = m.nc # number of classes
|
129 |
+
self.nl = m.nl # number of layers
|
130 |
+
self.no = m.no
|
131 |
+
self.reg_max = m.reg_max
|
132 |
+
self.device = device
|
133 |
+
|
134 |
+
self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
135 |
+
num_classes=self.nc,
|
136 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
137 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
138 |
+
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
139 |
+
self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
|
140 |
+
self.use_dfl = use_dfl
|
141 |
+
|
142 |
+
def preprocess(self, targets, batch_size, scale_tensor):
|
143 |
+
if targets.shape[0] == 0:
|
144 |
+
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
145 |
+
else:
|
146 |
+
i = targets[:, 0] # image index
|
147 |
+
_, counts = i.unique(return_counts=True)
|
148 |
+
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
149 |
+
for j in range(batch_size):
|
150 |
+
matches = i == j
|
151 |
+
n = matches.sum()
|
152 |
+
if n:
|
153 |
+
out[j, :n] = targets[matches, 1:]
|
154 |
+
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
155 |
+
return out
|
156 |
+
|
157 |
+
def bbox_decode(self, anchor_points, pred_dist):
|
158 |
+
if self.use_dfl:
|
159 |
+
b, a, c = pred_dist.shape # batch, anchors, channels
|
160 |
+
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
161 |
+
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
162 |
+
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
163 |
+
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
164 |
+
|
165 |
+
def __call__(self, p, targets, img=None, epoch=0):
|
166 |
+
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
167 |
+
feats = p[1] if isinstance(p, tuple) else p
|
168 |
+
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
169 |
+
(self.reg_max * 4, self.nc), 1)
|
170 |
+
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
171 |
+
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
172 |
+
|
173 |
+
dtype = pred_scores.dtype
|
174 |
+
batch_size, grid_size = pred_scores.shape[:2]
|
175 |
+
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
176 |
+
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
177 |
+
|
178 |
+
# targets
|
179 |
+
targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
180 |
+
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
181 |
+
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
182 |
+
|
183 |
+
# pboxes
|
184 |
+
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
185 |
+
|
186 |
+
target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
|
187 |
+
pred_scores.detach().sigmoid(),
|
188 |
+
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
189 |
+
anchor_points * stride_tensor,
|
190 |
+
gt_labels,
|
191 |
+
gt_bboxes,
|
192 |
+
mask_gt)
|
193 |
+
|
194 |
+
target_bboxes /= stride_tensor
|
195 |
+
target_scores_sum = max(target_scores.sum(), 1)
|
196 |
+
|
197 |
+
# cls loss
|
198 |
+
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
199 |
+
loss[1] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
200 |
+
|
201 |
+
# bbox loss
|
202 |
+
if fg_mask.sum():
|
203 |
+
loss[0], loss[2], iou = self.bbox_loss(pred_distri,
|
204 |
+
pred_bboxes,
|
205 |
+
anchor_points,
|
206 |
+
target_bboxes,
|
207 |
+
target_scores,
|
208 |
+
target_scores_sum,
|
209 |
+
fg_mask)
|
210 |
+
|
211 |
+
loss[0] *= 7.5 # box gain
|
212 |
+
loss[1] *= 0.5 # cls gain
|
213 |
+
loss[2] *= 1.5 # dfl gain
|
214 |
+
|
215 |
+
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
utils/loss_tal_dual.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from utils.general import xywh2xyxy
|
8 |
+
from utils.metrics import bbox_iou
|
9 |
+
from utils.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
|
10 |
+
from utils.tal.assigner import TaskAlignedAssigner
|
11 |
+
from utils.torch_utils import de_parallel
|
12 |
+
|
13 |
+
|
14 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
15 |
+
# return positive, negative label smoothing BCE targets
|
16 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
17 |
+
|
18 |
+
|
19 |
+
class VarifocalLoss(nn.Module):
|
20 |
+
# Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
|
21 |
+
def __init__(self):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
|
25 |
+
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
26 |
+
with torch.cuda.amp.autocast(enabled=False):
|
27 |
+
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
|
28 |
+
reduction="none") * weight).sum()
|
29 |
+
return loss
|
30 |
+
|
31 |
+
|
32 |
+
class FocalLoss(nn.Module):
|
33 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
34 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
35 |
+
super().__init__()
|
36 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
37 |
+
self.gamma = gamma
|
38 |
+
self.alpha = alpha
|
39 |
+
self.reduction = loss_fcn.reduction
|
40 |
+
self.loss_fcn.reduction = "none" # required to apply FL to each element
|
41 |
+
|
42 |
+
def forward(self, pred, true):
|
43 |
+
loss = self.loss_fcn(pred, true)
|
44 |
+
# p_t = torch.exp(-loss)
|
45 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
46 |
+
|
47 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
48 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
49 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
50 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
51 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
52 |
+
loss *= alpha_factor * modulating_factor
|
53 |
+
|
54 |
+
if self.reduction == "mean":
|
55 |
+
return loss.mean()
|
56 |
+
elif self.reduction == "sum":
|
57 |
+
return loss.sum()
|
58 |
+
else: # 'none'
|
59 |
+
return loss
|
60 |
+
|
61 |
+
|
62 |
+
class BboxLoss(nn.Module):
|
63 |
+
def __init__(self, reg_max, use_dfl=False):
|
64 |
+
super().__init__()
|
65 |
+
self.reg_max = reg_max
|
66 |
+
self.use_dfl = use_dfl
|
67 |
+
|
68 |
+
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
|
69 |
+
# iou loss
|
70 |
+
bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
|
71 |
+
pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
|
72 |
+
target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
|
73 |
+
bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
|
74 |
+
|
75 |
+
iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
|
76 |
+
loss_iou = 1.0 - iou
|
77 |
+
|
78 |
+
loss_iou *= bbox_weight
|
79 |
+
loss_iou = loss_iou.sum() / target_scores_sum
|
80 |
+
|
81 |
+
# dfl loss
|
82 |
+
if self.use_dfl:
|
83 |
+
dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
|
84 |
+
pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
|
85 |
+
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
|
86 |
+
target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
|
87 |
+
loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
|
88 |
+
loss_dfl = loss_dfl.sum() / target_scores_sum
|
89 |
+
else:
|
90 |
+
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
|
91 |
+
|
92 |
+
return loss_iou, loss_dfl, iou
|
93 |
+
|
94 |
+
def _df_loss(self, pred_dist, target):
|
95 |
+
target_left = target.to(torch.long)
|
96 |
+
target_right = target_left + 1
|
97 |
+
weight_left = target_right.to(torch.float) - target
|
98 |
+
weight_right = 1 - weight_left
|
99 |
+
loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
|
100 |
+
target_left.shape) * weight_left
|
101 |
+
loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
|
102 |
+
reduction="none").view(target_left.shape) * weight_right
|
103 |
+
return (loss_left + loss_right).mean(-1, keepdim=True)
|
104 |
+
|
105 |
+
|
106 |
+
class ComputeLoss:
|
107 |
+
# Compute losses
|
108 |
+
def __init__(self, model, use_dfl=True):
|
109 |
+
device = next(model.parameters()).device # get model device
|
110 |
+
h = model.hyp # hyperparameters
|
111 |
+
|
112 |
+
# Define criteria
|
113 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
|
114 |
+
|
115 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
116 |
+
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
|
117 |
+
|
118 |
+
# Focal loss
|
119 |
+
g = h["fl_gamma"] # focal loss gamma
|
120 |
+
if g > 0:
|
121 |
+
BCEcls = FocalLoss(BCEcls, g)
|
122 |
+
|
123 |
+
m = de_parallel(model).model[-1] # Detect() module
|
124 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
125 |
+
self.BCEcls = BCEcls
|
126 |
+
self.hyp = h
|
127 |
+
self.stride = m.stride # model strides
|
128 |
+
self.nc = m.nc # number of classes
|
129 |
+
self.nl = m.nl # number of layers
|
130 |
+
self.no = m.no
|
131 |
+
self.reg_max = m.reg_max
|
132 |
+
self.device = device
|
133 |
+
|
134 |
+
self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
135 |
+
num_classes=self.nc,
|
136 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
137 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
138 |
+
self.assigner2 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
139 |
+
num_classes=self.nc,
|
140 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
141 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
142 |
+
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
143 |
+
self.bbox_loss2 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
144 |
+
self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
|
145 |
+
self.use_dfl = use_dfl
|
146 |
+
|
147 |
+
def preprocess(self, targets, batch_size, scale_tensor):
|
148 |
+
if targets.shape[0] == 0:
|
149 |
+
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
150 |
+
else:
|
151 |
+
i = targets[:, 0] # image index
|
152 |
+
_, counts = i.unique(return_counts=True)
|
153 |
+
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
154 |
+
for j in range(batch_size):
|
155 |
+
matches = i == j
|
156 |
+
n = matches.sum()
|
157 |
+
if n:
|
158 |
+
out[j, :n] = targets[matches, 1:]
|
159 |
+
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
160 |
+
return out
|
161 |
+
|
162 |
+
def bbox_decode(self, anchor_points, pred_dist):
|
163 |
+
if self.use_dfl:
|
164 |
+
b, a, c = pred_dist.shape # batch, anchors, channels
|
165 |
+
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
166 |
+
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
167 |
+
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
168 |
+
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
169 |
+
|
170 |
+
def __call__(self, p, targets, img=None, epoch=0):
|
171 |
+
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
172 |
+
feats = p[1][0] if isinstance(p, tuple) else p[0]
|
173 |
+
feats2 = p[1][1] if isinstance(p, tuple) else p[1]
|
174 |
+
|
175 |
+
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
176 |
+
(self.reg_max * 4, self.nc), 1)
|
177 |
+
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
178 |
+
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
179 |
+
|
180 |
+
pred_distri2, pred_scores2 = torch.cat([xi.view(feats2[0].shape[0], self.no, -1) for xi in feats2], 2).split(
|
181 |
+
(self.reg_max * 4, self.nc), 1)
|
182 |
+
pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
|
183 |
+
pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
|
184 |
+
|
185 |
+
dtype = pred_scores.dtype
|
186 |
+
batch_size, grid_size = pred_scores.shape[:2]
|
187 |
+
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
188 |
+
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
189 |
+
|
190 |
+
# targets
|
191 |
+
targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
192 |
+
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
193 |
+
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
194 |
+
|
195 |
+
# pboxes
|
196 |
+
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
197 |
+
pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
|
198 |
+
|
199 |
+
target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
|
200 |
+
pred_scores.detach().sigmoid(),
|
201 |
+
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
202 |
+
anchor_points * stride_tensor,
|
203 |
+
gt_labels,
|
204 |
+
gt_bboxes,
|
205 |
+
mask_gt)
|
206 |
+
target_labels2, target_bboxes2, target_scores2, fg_mask2 = self.assigner2(
|
207 |
+
pred_scores2.detach().sigmoid(),
|
208 |
+
(pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
|
209 |
+
anchor_points * stride_tensor,
|
210 |
+
gt_labels,
|
211 |
+
gt_bboxes,
|
212 |
+
mask_gt)
|
213 |
+
|
214 |
+
target_bboxes /= stride_tensor
|
215 |
+
target_scores_sum = max(target_scores.sum(), 1)
|
216 |
+
target_bboxes2 /= stride_tensor
|
217 |
+
target_scores_sum2 = max(target_scores2.sum(), 1)
|
218 |
+
|
219 |
+
# cls loss
|
220 |
+
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
221 |
+
loss[1] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
222 |
+
loss[1] *= 0.25
|
223 |
+
loss[1] += self.BCEcls(pred_scores2, target_scores2.to(dtype)).sum() / target_scores_sum2 # BCE
|
224 |
+
|
225 |
+
# bbox loss
|
226 |
+
if fg_mask.sum():
|
227 |
+
loss[0], loss[2], iou = self.bbox_loss(pred_distri,
|
228 |
+
pred_bboxes,
|
229 |
+
anchor_points,
|
230 |
+
target_bboxes,
|
231 |
+
target_scores,
|
232 |
+
target_scores_sum,
|
233 |
+
fg_mask)
|
234 |
+
loss[0] *= 0.25
|
235 |
+
loss[2] *= 0.25
|
236 |
+
if fg_mask2.sum():
|
237 |
+
loss0_, loss2_, iou2 = self.bbox_loss2(pred_distri2,
|
238 |
+
pred_bboxes2,
|
239 |
+
anchor_points,
|
240 |
+
target_bboxes2,
|
241 |
+
target_scores2,
|
242 |
+
target_scores_sum2,
|
243 |
+
fg_mask2)
|
244 |
+
loss[0] += loss0_
|
245 |
+
loss[2] += loss2_
|
246 |
+
|
247 |
+
loss[0] *= 7.5 # box gain
|
248 |
+
loss[1] *= 0.5 # cls gain
|
249 |
+
loss[2] *= 1.5 # dfl gain
|
250 |
+
|
251 |
+
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
252 |
+
|
253 |
+
|
254 |
+
class ComputeLossLH:
|
255 |
+
# Compute losses
|
256 |
+
def __init__(self, model, use_dfl=True):
|
257 |
+
device = next(model.parameters()).device # get model device
|
258 |
+
h = model.hyp # hyperparameters
|
259 |
+
|
260 |
+
# Define criteria
|
261 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
|
262 |
+
|
263 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
264 |
+
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
|
265 |
+
|
266 |
+
# Focal loss
|
267 |
+
g = h["fl_gamma"] # focal loss gamma
|
268 |
+
if g > 0:
|
269 |
+
BCEcls = FocalLoss(BCEcls, g)
|
270 |
+
|
271 |
+
m = de_parallel(model).model[-1] # Detect() module
|
272 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
273 |
+
self.BCEcls = BCEcls
|
274 |
+
self.hyp = h
|
275 |
+
self.stride = m.stride # model strides
|
276 |
+
self.nc = m.nc # number of classes
|
277 |
+
self.nl = m.nl # number of layers
|
278 |
+
self.no = m.no
|
279 |
+
self.reg_max = m.reg_max
|
280 |
+
self.device = device
|
281 |
+
|
282 |
+
self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
283 |
+
num_classes=self.nc,
|
284 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
285 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
286 |
+
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
287 |
+
self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
|
288 |
+
self.use_dfl = use_dfl
|
289 |
+
|
290 |
+
def preprocess(self, targets, batch_size, scale_tensor):
|
291 |
+
if targets.shape[0] == 0:
|
292 |
+
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
293 |
+
else:
|
294 |
+
i = targets[:, 0] # image index
|
295 |
+
_, counts = i.unique(return_counts=True)
|
296 |
+
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
297 |
+
for j in range(batch_size):
|
298 |
+
matches = i == j
|
299 |
+
n = matches.sum()
|
300 |
+
if n:
|
301 |
+
out[j, :n] = targets[matches, 1:]
|
302 |
+
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
303 |
+
return out
|
304 |
+
|
305 |
+
def bbox_decode(self, anchor_points, pred_dist):
|
306 |
+
if self.use_dfl:
|
307 |
+
b, a, c = pred_dist.shape # batch, anchors, channels
|
308 |
+
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
309 |
+
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
310 |
+
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
311 |
+
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
312 |
+
|
313 |
+
def __call__(self, p, targets, img=None, epoch=0):
|
314 |
+
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
315 |
+
feats = p[1][0] if isinstance(p, tuple) else p[0]
|
316 |
+
feats2 = p[1][1] if isinstance(p, tuple) else p[1]
|
317 |
+
|
318 |
+
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
319 |
+
(self.reg_max * 4, self.nc), 1)
|
320 |
+
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
321 |
+
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
322 |
+
|
323 |
+
pred_distri2, pred_scores2 = torch.cat([xi.view(feats2[0].shape[0], self.no, -1) for xi in feats2], 2).split(
|
324 |
+
(self.reg_max * 4, self.nc), 1)
|
325 |
+
pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
|
326 |
+
pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
|
327 |
+
|
328 |
+
dtype = pred_scores.dtype
|
329 |
+
batch_size, grid_size = pred_scores.shape[:2]
|
330 |
+
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
331 |
+
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
332 |
+
|
333 |
+
# targets
|
334 |
+
targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
335 |
+
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
336 |
+
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
337 |
+
|
338 |
+
# pboxes
|
339 |
+
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
340 |
+
pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
|
341 |
+
|
342 |
+
target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
|
343 |
+
pred_scores2.detach().sigmoid(),
|
344 |
+
(pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
|
345 |
+
anchor_points * stride_tensor,
|
346 |
+
gt_labels,
|
347 |
+
gt_bboxes,
|
348 |
+
mask_gt)
|
349 |
+
|
350 |
+
target_bboxes /= stride_tensor
|
351 |
+
target_scores_sum = target_scores.sum()
|
352 |
+
|
353 |
+
# cls loss
|
354 |
+
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
355 |
+
loss[1] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
356 |
+
loss[1] *= 0.25
|
357 |
+
loss[1] += self.BCEcls(pred_scores2, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
358 |
+
|
359 |
+
# bbox loss
|
360 |
+
if fg_mask.sum():
|
361 |
+
loss[0], loss[2], iou = self.bbox_loss(pred_distri,
|
362 |
+
pred_bboxes,
|
363 |
+
anchor_points,
|
364 |
+
target_bboxes,
|
365 |
+
target_scores,
|
366 |
+
target_scores_sum,
|
367 |
+
fg_mask)
|
368 |
+
loss[0] *= 0.25
|
369 |
+
loss[2] *= 0.25
|
370 |
+
if fg_mask.sum():
|
371 |
+
loss0_, loss2_, iou2 = self.bbox_loss(pred_distri2,
|
372 |
+
pred_bboxes2,
|
373 |
+
anchor_points,
|
374 |
+
target_bboxes,
|
375 |
+
target_scores,
|
376 |
+
target_scores_sum,
|
377 |
+
fg_mask)
|
378 |
+
loss[0] += loss0_
|
379 |
+
loss[2] += loss2_
|
380 |
+
|
381 |
+
loss[0] *= 7.5 # box gain
|
382 |
+
loss[1] *= 0.5 # cls gain
|
383 |
+
loss[2] *= 1.5 # dfl gain
|
384 |
+
|
385 |
+
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
utils/loss_tal_triple.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from utils.general import xywh2xyxy
|
8 |
+
from utils.metrics import bbox_iou
|
9 |
+
from utils.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
|
10 |
+
from utils.tal.assigner import TaskAlignedAssigner
|
11 |
+
from utils.torch_utils import de_parallel
|
12 |
+
|
13 |
+
|
14 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
15 |
+
# return positive, negative label smoothing BCE targets
|
16 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
17 |
+
|
18 |
+
|
19 |
+
class VarifocalLoss(nn.Module):
|
20 |
+
# Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
|
21 |
+
def __init__(self):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
|
25 |
+
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
26 |
+
with torch.cuda.amp.autocast(enabled=False):
|
27 |
+
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
|
28 |
+
reduction="none") * weight).sum()
|
29 |
+
return loss
|
30 |
+
|
31 |
+
|
32 |
+
class FocalLoss(nn.Module):
|
33 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
34 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
35 |
+
super().__init__()
|
36 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
37 |
+
self.gamma = gamma
|
38 |
+
self.alpha = alpha
|
39 |
+
self.reduction = loss_fcn.reduction
|
40 |
+
self.loss_fcn.reduction = "none" # required to apply FL to each element
|
41 |
+
|
42 |
+
def forward(self, pred, true):
|
43 |
+
loss = self.loss_fcn(pred, true)
|
44 |
+
# p_t = torch.exp(-loss)
|
45 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
46 |
+
|
47 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
48 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
49 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
50 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
51 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
52 |
+
loss *= alpha_factor * modulating_factor
|
53 |
+
|
54 |
+
if self.reduction == "mean":
|
55 |
+
return loss.mean()
|
56 |
+
elif self.reduction == "sum":
|
57 |
+
return loss.sum()
|
58 |
+
else: # 'none'
|
59 |
+
return loss
|
60 |
+
|
61 |
+
|
62 |
+
class BboxLoss(nn.Module):
|
63 |
+
def __init__(self, reg_max, use_dfl=False):
|
64 |
+
super().__init__()
|
65 |
+
self.reg_max = reg_max
|
66 |
+
self.use_dfl = use_dfl
|
67 |
+
|
68 |
+
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
|
69 |
+
# iou loss
|
70 |
+
bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
|
71 |
+
pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
|
72 |
+
target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
|
73 |
+
bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
|
74 |
+
|
75 |
+
iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
|
76 |
+
loss_iou = 1.0 - iou
|
77 |
+
|
78 |
+
loss_iou *= bbox_weight
|
79 |
+
loss_iou = loss_iou.sum() / target_scores_sum
|
80 |
+
|
81 |
+
# dfl loss
|
82 |
+
if self.use_dfl:
|
83 |
+
dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
|
84 |
+
pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
|
85 |
+
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
|
86 |
+
target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
|
87 |
+
loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
|
88 |
+
loss_dfl = loss_dfl.sum() / target_scores_sum
|
89 |
+
else:
|
90 |
+
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
|
91 |
+
|
92 |
+
return loss_iou, loss_dfl, iou
|
93 |
+
|
94 |
+
def _df_loss(self, pred_dist, target):
|
95 |
+
target_left = target.to(torch.long)
|
96 |
+
target_right = target_left + 1
|
97 |
+
weight_left = target_right.to(torch.float) - target
|
98 |
+
weight_right = 1 - weight_left
|
99 |
+
loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
|
100 |
+
target_left.shape) * weight_left
|
101 |
+
loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
|
102 |
+
reduction="none").view(target_left.shape) * weight_right
|
103 |
+
return (loss_left + loss_right).mean(-1, keepdim=True)
|
104 |
+
|
105 |
+
|
106 |
+
class ComputeLoss:
|
107 |
+
# Compute losses
|
108 |
+
def __init__(self, model, use_dfl=True):
|
109 |
+
device = next(model.parameters()).device # get model device
|
110 |
+
h = model.hyp # hyperparameters
|
111 |
+
|
112 |
+
# Define criteria
|
113 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
|
114 |
+
|
115 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
116 |
+
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
|
117 |
+
|
118 |
+
# Focal loss
|
119 |
+
g = h["fl_gamma"] # focal loss gamma
|
120 |
+
if g > 0:
|
121 |
+
BCEcls = FocalLoss(BCEcls, g)
|
122 |
+
|
123 |
+
m = de_parallel(model).model[-1] # Detect() module
|
124 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
125 |
+
self.BCEcls = BCEcls
|
126 |
+
self.hyp = h
|
127 |
+
self.stride = m.stride # model strides
|
128 |
+
self.nc = m.nc # number of classes
|
129 |
+
self.nl = m.nl # number of layers
|
130 |
+
self.no = m.no
|
131 |
+
self.reg_max = m.reg_max
|
132 |
+
self.device = device
|
133 |
+
|
134 |
+
self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
135 |
+
num_classes=self.nc,
|
136 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
137 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
138 |
+
self.assigner2 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
139 |
+
num_classes=self.nc,
|
140 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
141 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
142 |
+
self.assigner3 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
143 |
+
num_classes=self.nc,
|
144 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
145 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
146 |
+
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
147 |
+
self.bbox_loss2 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
148 |
+
self.bbox_loss3 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
149 |
+
self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
|
150 |
+
self.use_dfl = use_dfl
|
151 |
+
|
152 |
+
def preprocess(self, targets, batch_size, scale_tensor):
|
153 |
+
if targets.shape[0] == 0:
|
154 |
+
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
155 |
+
else:
|
156 |
+
i = targets[:, 0] # image index
|
157 |
+
_, counts = i.unique(return_counts=True)
|
158 |
+
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
159 |
+
for j in range(batch_size):
|
160 |
+
matches = i == j
|
161 |
+
n = matches.sum()
|
162 |
+
if n:
|
163 |
+
out[j, :n] = targets[matches, 1:]
|
164 |
+
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
165 |
+
return out
|
166 |
+
|
167 |
+
def bbox_decode(self, anchor_points, pred_dist):
|
168 |
+
if self.use_dfl:
|
169 |
+
b, a, c = pred_dist.shape # batch, anchors, channels
|
170 |
+
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
171 |
+
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
172 |
+
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
173 |
+
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
174 |
+
|
175 |
+
def __call__(self, p, targets, img=None, epoch=0):
|
176 |
+
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
177 |
+
feats = p[1][0] if isinstance(p, tuple) else p[0]
|
178 |
+
feats2 = p[1][1] if isinstance(p, tuple) else p[1]
|
179 |
+
feats3 = p[1][2] if isinstance(p, tuple) else p[2]
|
180 |
+
|
181 |
+
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
182 |
+
(self.reg_max * 4, self.nc), 1)
|
183 |
+
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
184 |
+
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
185 |
+
|
186 |
+
pred_distri2, pred_scores2 = torch.cat([xi.view(feats2[0].shape[0], self.no, -1) for xi in feats2], 2).split(
|
187 |
+
(self.reg_max * 4, self.nc), 1)
|
188 |
+
pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
|
189 |
+
pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
|
190 |
+
|
191 |
+
pred_distri3, pred_scores3 = torch.cat([xi.view(feats3[0].shape[0], self.no, -1) for xi in feats3], 2).split(
|
192 |
+
(self.reg_max * 4, self.nc), 1)
|
193 |
+
pred_scores3 = pred_scores3.permute(0, 2, 1).contiguous()
|
194 |
+
pred_distri3 = pred_distri3.permute(0, 2, 1).contiguous()
|
195 |
+
|
196 |
+
dtype = pred_scores.dtype
|
197 |
+
batch_size, grid_size = pred_scores.shape[:2]
|
198 |
+
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
199 |
+
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
200 |
+
|
201 |
+
# targets
|
202 |
+
targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
203 |
+
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
204 |
+
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
205 |
+
|
206 |
+
# pboxes
|
207 |
+
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
208 |
+
pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
|
209 |
+
pred_bboxes3 = self.bbox_decode(anchor_points, pred_distri3) # xyxy, (b, h*w, 4)
|
210 |
+
|
211 |
+
target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
|
212 |
+
pred_scores.detach().sigmoid(),
|
213 |
+
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
214 |
+
anchor_points * stride_tensor,
|
215 |
+
gt_labels,
|
216 |
+
gt_bboxes,
|
217 |
+
mask_gt)
|
218 |
+
target_labels2, target_bboxes2, target_scores2, fg_mask2 = self.assigner2(
|
219 |
+
pred_scores2.detach().sigmoid(),
|
220 |
+
(pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
|
221 |
+
anchor_points * stride_tensor,
|
222 |
+
gt_labels,
|
223 |
+
gt_bboxes,
|
224 |
+
mask_gt)
|
225 |
+
target_labels3, target_bboxes3, target_scores3, fg_mask3 = self.assigner3(
|
226 |
+
pred_scores3.detach().sigmoid(),
|
227 |
+
(pred_bboxes3.detach() * stride_tensor).type(gt_bboxes.dtype),
|
228 |
+
anchor_points * stride_tensor,
|
229 |
+
gt_labels,
|
230 |
+
gt_bboxes,
|
231 |
+
mask_gt)
|
232 |
+
|
233 |
+
target_bboxes /= stride_tensor
|
234 |
+
target_scores_sum = max(target_scores.sum(), 1)
|
235 |
+
target_bboxes2 /= stride_tensor
|
236 |
+
target_scores_sum2 = max(target_scores2.sum(), 1)
|
237 |
+
target_bboxes3 /= stride_tensor
|
238 |
+
target_scores_sum3 = max(target_scores3.sum(), 1)
|
239 |
+
|
240 |
+
# cls loss
|
241 |
+
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
242 |
+
loss[1] = 0.25 * self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
243 |
+
loss[1] += 0.25 * self.BCEcls(pred_scores2, target_scores2.to(dtype)).sum() / target_scores_sum2 # BCE
|
244 |
+
loss[1] += self.BCEcls(pred_scores3, target_scores3.to(dtype)).sum() / target_scores_sum3 # BCE
|
245 |
+
|
246 |
+
# bbox loss
|
247 |
+
if fg_mask.sum():
|
248 |
+
loss[0], loss[2], iou = self.bbox_loss(pred_distri,
|
249 |
+
pred_bboxes,
|
250 |
+
anchor_points,
|
251 |
+
target_bboxes,
|
252 |
+
target_scores,
|
253 |
+
target_scores_sum,
|
254 |
+
fg_mask)
|
255 |
+
loss[0] *= 0.25
|
256 |
+
loss[2] *= 0.25
|
257 |
+
if fg_mask2.sum():
|
258 |
+
loss0_, loss2_, iou2 = self.bbox_loss2(pred_distri2,
|
259 |
+
pred_bboxes2,
|
260 |
+
anchor_points,
|
261 |
+
target_bboxes2,
|
262 |
+
target_scores2,
|
263 |
+
target_scores_sum2,
|
264 |
+
fg_mask2)
|
265 |
+
loss[0] += 0.25 * loss0_
|
266 |
+
loss[2] += 0.25 * loss2_
|
267 |
+
if fg_mask3.sum():
|
268 |
+
loss0__, loss2__, iou3 = self.bbox_loss3(pred_distri3,
|
269 |
+
pred_bboxes3,
|
270 |
+
anchor_points,
|
271 |
+
target_bboxes3,
|
272 |
+
target_scores3,
|
273 |
+
target_scores_sum3,
|
274 |
+
fg_mask3)
|
275 |
+
loss[0] += loss0__
|
276 |
+
loss[2] += loss2__
|
277 |
+
|
278 |
+
loss[0] *= 7.5 # box gain
|
279 |
+
loss[1] *= 0.5 # cls gain
|
280 |
+
loss[2] *= 1.5 # dfl gain
|
281 |
+
|
282 |
+
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
utils/metrics.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from utils import TryExcept, threaded
|
10 |
+
|
11 |
+
|
12 |
+
def fitness(x):
|
13 |
+
# Model fitness as a weighted combination of metrics
|
14 |
+
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
15 |
+
return (x[:, :4] * w).sum(1)
|
16 |
+
|
17 |
+
|
18 |
+
def smooth(y, f=0.05):
|
19 |
+
# Box filter of fraction f
|
20 |
+
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
21 |
+
p = np.ones(nf // 2) # ones padding
|
22 |
+
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
23 |
+
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
24 |
+
|
25 |
+
|
26 |
+
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
|
27 |
+
""" Compute the average precision, given the recall and precision curves.
|
28 |
+
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
29 |
+
# Arguments
|
30 |
+
tp: True positives (nparray, nx1 or nx10).
|
31 |
+
conf: Objectness value from 0-1 (nparray).
|
32 |
+
pred_cls: Predicted object classes (nparray).
|
33 |
+
target_cls: True object classes (nparray).
|
34 |
+
plot: Plot precision-recall curve at mAP@0.5
|
35 |
+
save_dir: Plot save directory
|
36 |
+
# Returns
|
37 |
+
The average precision as computed in py-faster-rcnn.
|
38 |
+
"""
|
39 |
+
|
40 |
+
# Sort by objectness
|
41 |
+
i = np.argsort(-conf)
|
42 |
+
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
43 |
+
|
44 |
+
# Find unique classes
|
45 |
+
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
46 |
+
nc = unique_classes.shape[0] # number of classes, number of detections
|
47 |
+
|
48 |
+
# Create Precision-Recall curve and compute AP for each class
|
49 |
+
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
50 |
+
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
51 |
+
for ci, c in enumerate(unique_classes):
|
52 |
+
i = pred_cls == c
|
53 |
+
n_l = nt[ci] # number of labels
|
54 |
+
n_p = i.sum() # number of predictions
|
55 |
+
if n_p == 0 or n_l == 0:
|
56 |
+
continue
|
57 |
+
|
58 |
+
# Accumulate FPs and TPs
|
59 |
+
fpc = (1 - tp[i]).cumsum(0)
|
60 |
+
tpc = tp[i].cumsum(0)
|
61 |
+
|
62 |
+
# Recall
|
63 |
+
recall = tpc / (n_l + eps) # recall curve
|
64 |
+
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
65 |
+
|
66 |
+
# Precision
|
67 |
+
precision = tpc / (tpc + fpc) # precision curve
|
68 |
+
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
69 |
+
|
70 |
+
# AP from recall-precision curve
|
71 |
+
for j in range(tp.shape[1]):
|
72 |
+
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
73 |
+
if plot and j == 0:
|
74 |
+
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
75 |
+
|
76 |
+
# Compute F1 (harmonic mean of precision and recall)
|
77 |
+
f1 = 2 * p * r / (p + r + eps)
|
78 |
+
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
79 |
+
names = dict(enumerate(names)) # to dict
|
80 |
+
if plot:
|
81 |
+
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
|
82 |
+
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
|
83 |
+
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
|
84 |
+
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
|
85 |
+
|
86 |
+
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
87 |
+
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
88 |
+
tp = (r * nt).round() # true positives
|
89 |
+
fp = (tp / (p + eps) - tp).round() # false positives
|
90 |
+
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
91 |
+
|
92 |
+
|
93 |
+
def compute_ap(recall, precision):
|
94 |
+
""" Compute the average precision, given the recall and precision curves
|
95 |
+
# Arguments
|
96 |
+
recall: The recall curve (list)
|
97 |
+
precision: The precision curve (list)
|
98 |
+
# Returns
|
99 |
+
Average precision, precision curve, recall curve
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Append sentinel values to beginning and end
|
103 |
+
mrec = np.concatenate(([0.0], recall, [1.0]))
|
104 |
+
mpre = np.concatenate(([1.0], precision, [0.0]))
|
105 |
+
|
106 |
+
# Compute the precision envelope
|
107 |
+
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
108 |
+
|
109 |
+
# Integrate area under curve
|
110 |
+
method = 'interp' # methods: 'continuous', 'interp'
|
111 |
+
if method == 'interp':
|
112 |
+
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
113 |
+
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
114 |
+
else: # 'continuous'
|
115 |
+
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
116 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
117 |
+
|
118 |
+
return ap, mpre, mrec
|
119 |
+
|
120 |
+
|
121 |
+
class ConfusionMatrix:
|
122 |
+
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
123 |
+
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
124 |
+
self.matrix = np.zeros((nc + 1, nc + 1))
|
125 |
+
self.nc = nc # number of classes
|
126 |
+
self.conf = conf
|
127 |
+
self.iou_thres = iou_thres
|
128 |
+
|
129 |
+
def process_batch(self, detections, labels):
|
130 |
+
"""
|
131 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
132 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
133 |
+
Arguments:
|
134 |
+
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
135 |
+
labels (Array[M, 5]), class, x1, y1, x2, y2
|
136 |
+
Returns:
|
137 |
+
None, updates confusion matrix accordingly
|
138 |
+
"""
|
139 |
+
if detections is None:
|
140 |
+
gt_classes = labels.int()
|
141 |
+
for gc in gt_classes:
|
142 |
+
self.matrix[self.nc, gc] += 1 # background FN
|
143 |
+
return
|
144 |
+
|
145 |
+
detections = detections[detections[:, 4] > self.conf]
|
146 |
+
gt_classes = labels[:, 0].int()
|
147 |
+
detection_classes = detections[:, 5].int()
|
148 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
149 |
+
|
150 |
+
x = torch.where(iou > self.iou_thres)
|
151 |
+
if x[0].shape[0]:
|
152 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
153 |
+
if x[0].shape[0] > 1:
|
154 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
155 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
156 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
157 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
158 |
+
else:
|
159 |
+
matches = np.zeros((0, 3))
|
160 |
+
|
161 |
+
n = matches.shape[0] > 0
|
162 |
+
m0, m1, _ = matches.transpose().astype(int)
|
163 |
+
for i, gc in enumerate(gt_classes):
|
164 |
+
j = m0 == i
|
165 |
+
if n and sum(j) == 1:
|
166 |
+
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
167 |
+
else:
|
168 |
+
self.matrix[self.nc, gc] += 1 # true background
|
169 |
+
|
170 |
+
if n:
|
171 |
+
for i, dc in enumerate(detection_classes):
|
172 |
+
if not any(m1 == i):
|
173 |
+
self.matrix[dc, self.nc] += 1 # predicted background
|
174 |
+
|
175 |
+
def matrix(self):
|
176 |
+
return self.matrix
|
177 |
+
|
178 |
+
def tp_fp(self):
|
179 |
+
tp = self.matrix.diagonal() # true positives
|
180 |
+
fp = self.matrix.sum(1) - tp # false positives
|
181 |
+
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
182 |
+
return tp[:-1], fp[:-1] # remove background class
|
183 |
+
|
184 |
+
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
185 |
+
def plot(self, normalize=True, save_dir='', names=()):
|
186 |
+
import seaborn as sn
|
187 |
+
|
188 |
+
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
189 |
+
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
190 |
+
|
191 |
+
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
192 |
+
nc, nn = self.nc, len(names) # number of classes, names
|
193 |
+
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
194 |
+
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
195 |
+
ticklabels = (names + ['background']) if labels else "auto"
|
196 |
+
with warnings.catch_warnings():
|
197 |
+
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
198 |
+
sn.heatmap(array,
|
199 |
+
ax=ax,
|
200 |
+
annot=nc < 30,
|
201 |
+
annot_kws={
|
202 |
+
"size": 8},
|
203 |
+
cmap='Blues',
|
204 |
+
fmt='.2f',
|
205 |
+
square=True,
|
206 |
+
vmin=0.0,
|
207 |
+
xticklabels=ticklabels,
|
208 |
+
yticklabels=ticklabels).set_facecolor((1, 1, 1))
|
209 |
+
ax.set_ylabel('True')
|
210 |
+
ax.set_ylabel('Predicted')
|
211 |
+
ax.set_title('Confusion Matrix')
|
212 |
+
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
213 |
+
plt.close(fig)
|
214 |
+
|
215 |
+
def print(self):
|
216 |
+
for i in range(self.nc + 1):
|
217 |
+
print(' '.join(map(str, self.matrix[i])))
|
218 |
+
|
219 |
+
|
220 |
+
class WIoU_Scale:
|
221 |
+
''' monotonous: {
|
222 |
+
None: origin v1
|
223 |
+
True: monotonic FM v2
|
224 |
+
False: non-monotonic FM v3
|
225 |
+
}
|
226 |
+
momentum: The momentum of running mean'''
|
227 |
+
|
228 |
+
iou_mean = 1.
|
229 |
+
monotonous = False
|
230 |
+
_momentum = 1 - 0.5 ** (1 / 7000)
|
231 |
+
_is_train = True
|
232 |
+
|
233 |
+
def __init__(self, iou):
|
234 |
+
self.iou = iou
|
235 |
+
self._update(self)
|
236 |
+
|
237 |
+
@classmethod
|
238 |
+
def _update(cls, self):
|
239 |
+
if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
|
240 |
+
cls._momentum * self.iou.detach().mean().item()
|
241 |
+
|
242 |
+
@classmethod
|
243 |
+
def _scaled_loss(cls, self, gamma=1.9, delta=3):
|
244 |
+
if isinstance(self.monotonous, bool):
|
245 |
+
if self.monotonous:
|
246 |
+
return (self.iou.detach() / self.iou_mean).sqrt()
|
247 |
+
else:
|
248 |
+
beta = self.iou.detach() / self.iou_mean
|
249 |
+
alpha = delta * torch.pow(gamma, beta - delta)
|
250 |
+
return beta / alpha
|
251 |
+
return 1
|
252 |
+
|
253 |
+
|
254 |
+
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, MDPIoU=False, feat_h=640, feat_w=640, eps=1e-7):
|
255 |
+
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
256 |
+
|
257 |
+
# Get the coordinates of bounding boxes
|
258 |
+
if xywh: # transform from xywh to xyxy
|
259 |
+
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
260 |
+
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
261 |
+
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
262 |
+
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
263 |
+
else: # x1, y1, x2, y2 = box1
|
264 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
265 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
266 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
267 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
268 |
+
|
269 |
+
# Intersection area
|
270 |
+
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
271 |
+
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
272 |
+
|
273 |
+
# Union Area
|
274 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
275 |
+
|
276 |
+
# IoU
|
277 |
+
iou = inter / union
|
278 |
+
if CIoU or DIoU or GIoU:
|
279 |
+
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
280 |
+
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
281 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
282 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
283 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
284 |
+
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
285 |
+
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
286 |
+
with torch.no_grad():
|
287 |
+
alpha = v / (v - iou + (1 + eps))
|
288 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
289 |
+
return iou - rho2 / c2 # DIoU
|
290 |
+
c_area = cw * ch + eps # convex area
|
291 |
+
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
292 |
+
elif MDPIoU:
|
293 |
+
d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
|
294 |
+
d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
|
295 |
+
mpdiou_hw_pow = feat_h ** 2 + feat_w ** 2
|
296 |
+
return iou - d1 / mpdiou_hw_pow - d2 / mpdiou_hw_pow # MPDIoU
|
297 |
+
return iou # IoU
|
298 |
+
|
299 |
+
|
300 |
+
def box_iou(box1, box2, eps=1e-7):
|
301 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
302 |
+
"""
|
303 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
304 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
305 |
+
Arguments:
|
306 |
+
box1 (Tensor[N, 4])
|
307 |
+
box2 (Tensor[M, 4])
|
308 |
+
Returns:
|
309 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
310 |
+
IoU values for every element in boxes1 and boxes2
|
311 |
+
"""
|
312 |
+
|
313 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
314 |
+
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
315 |
+
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
316 |
+
|
317 |
+
# IoU = inter / (area1 + area2 - inter)
|
318 |
+
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
|
319 |
+
|
320 |
+
|
321 |
+
def bbox_ioa(box1, box2, eps=1e-7):
|
322 |
+
"""Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
323 |
+
box1: np.array of shape(nx4)
|
324 |
+
box2: np.array of shape(mx4)
|
325 |
+
returns: np.array of shape(nxm)
|
326 |
+
"""
|
327 |
+
|
328 |
+
# Get the coordinates of bounding boxes
|
329 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
|
330 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
331 |
+
|
332 |
+
# Intersection area
|
333 |
+
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
|
334 |
+
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
|
335 |
+
|
336 |
+
# box2 area
|
337 |
+
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
338 |
+
|
339 |
+
# Intersection over box2 area
|
340 |
+
return inter_area / box2_area
|
341 |
+
|
342 |
+
|
343 |
+
def wh_iou(wh1, wh2, eps=1e-7):
|
344 |
+
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
345 |
+
wh1 = wh1[:, None] # [N,1,2]
|
346 |
+
wh2 = wh2[None] # [1,M,2]
|
347 |
+
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
348 |
+
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
|
349 |
+
|
350 |
+
|
351 |
+
# Plots ----------------------------------------------------------------------------------------------------------------
|
352 |
+
|
353 |
+
|
354 |
+
@threaded
|
355 |
+
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
356 |
+
# Precision-recall curve
|
357 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
358 |
+
py = np.stack(py, axis=1)
|
359 |
+
|
360 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
361 |
+
for i, y in enumerate(py.T):
|
362 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
363 |
+
else:
|
364 |
+
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
365 |
+
|
366 |
+
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
367 |
+
ax.set_xlabel('Recall')
|
368 |
+
ax.set_ylabel('Precision')
|
369 |
+
ax.set_xlim(0, 1)
|
370 |
+
ax.set_ylim(0, 1)
|
371 |
+
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
372 |
+
ax.set_title('Precision-Recall Curve')
|
373 |
+
fig.savefig(save_dir, dpi=250)
|
374 |
+
plt.close(fig)
|
375 |
+
|
376 |
+
|
377 |
+
@threaded
|
378 |
+
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
379 |
+
# Metric-confidence curve
|
380 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
381 |
+
|
382 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
383 |
+
for i, y in enumerate(py):
|
384 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
385 |
+
else:
|
386 |
+
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
387 |
+
|
388 |
+
y = smooth(py.mean(0), 0.05)
|
389 |
+
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
390 |
+
ax.set_xlabel(xlabel)
|
391 |
+
ax.set_ylabel(ylabel)
|
392 |
+
ax.set_xlim(0, 1)
|
393 |
+
ax.set_ylim(0, 1)
|
394 |
+
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
395 |
+
ax.set_title(f'{ylabel}-Confidence Curve')
|
396 |
+
fig.savefig(save_dir, dpi=250)
|
397 |
+
plt.close(fig)
|
utils/panoptic/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# init
|
utils/panoptic/augmentations.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from ..augmentations import box_candidates
|
8 |
+
from ..general import resample_segments, segment2box
|
9 |
+
from ..metrics import bbox_ioa
|
10 |
+
|
11 |
+
|
12 |
+
def mixup(im, labels, segments, seg_cls, semantic_masks, im2, labels2, segments2, seg_cls2, semantic_masks2):
|
13 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
14 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
15 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
16 |
+
labels = np.concatenate((labels, labels2), 0)
|
17 |
+
segments = np.concatenate((segments, segments2), 0)
|
18 |
+
seg_cls = np.concatenate((seg_cls, seg_cls2), 0)
|
19 |
+
semantic_masks = np.concatenate((semantic_masks, semantic_masks2), 0)
|
20 |
+
return im, labels, segments, seg_cls, semantic_masks
|
21 |
+
|
22 |
+
|
23 |
+
def random_perspective(im,
|
24 |
+
targets=(),
|
25 |
+
segments=(),
|
26 |
+
semantic_masks = (),
|
27 |
+
degrees=10,
|
28 |
+
translate=.1,
|
29 |
+
scale=.1,
|
30 |
+
shear=10,
|
31 |
+
perspective=0.0,
|
32 |
+
border=(0, 0)):
|
33 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
34 |
+
# targets = [cls, xyxy]
|
35 |
+
|
36 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
37 |
+
width = im.shape[1] + border[1] * 2
|
38 |
+
|
39 |
+
# Center
|
40 |
+
C = np.eye(3)
|
41 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
42 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
43 |
+
|
44 |
+
# Perspective
|
45 |
+
P = np.eye(3)
|
46 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
47 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
48 |
+
|
49 |
+
# Rotation and Scale
|
50 |
+
R = np.eye(3)
|
51 |
+
a = random.uniform(-degrees, degrees)
|
52 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
53 |
+
s = random.uniform(1 - scale, 1 + scale)
|
54 |
+
# s = 2 ** random.uniform(-scale, scale)
|
55 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
56 |
+
|
57 |
+
# Shear
|
58 |
+
S = np.eye(3)
|
59 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
60 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
61 |
+
|
62 |
+
# Translation
|
63 |
+
T = np.eye(3)
|
64 |
+
T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width) # x translation (pixels)
|
65 |
+
T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height) # y translation (pixels)
|
66 |
+
|
67 |
+
# Combined rotation matrix
|
68 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
69 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
70 |
+
if perspective:
|
71 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
72 |
+
else: # affine
|
73 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
74 |
+
|
75 |
+
# Visualize
|
76 |
+
# import matplotlib.pyplot as plt
|
77 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
78 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
79 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
80 |
+
|
81 |
+
# Transform label coordinates
|
82 |
+
n = len(targets)
|
83 |
+
new_segments = []
|
84 |
+
new_semantic_masks = []
|
85 |
+
if n:
|
86 |
+
new = np.zeros((n, 4))
|
87 |
+
segments = resample_segments(segments) # upsample
|
88 |
+
for i, segment in enumerate(segments):
|
89 |
+
xy = np.ones((len(segment), 3))
|
90 |
+
xy[:, :2] = segment
|
91 |
+
xy = xy @ M.T # transform
|
92 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
|
93 |
+
|
94 |
+
# clip
|
95 |
+
new[i] = segment2box(xy, width, height)
|
96 |
+
new_segments.append(xy)
|
97 |
+
|
98 |
+
semantic_masks = resample_segments(semantic_masks)
|
99 |
+
for i, semantic_mask in enumerate(semantic_masks):
|
100 |
+
#if i < n:
|
101 |
+
# xy = np.ones((len(segments[i]), 3))
|
102 |
+
# xy[:, :2] = segments[i]
|
103 |
+
# xy = xy @ M.T # transform
|
104 |
+
# xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
|
105 |
+
|
106 |
+
# new[i] = segment2box(xy, width, height)
|
107 |
+
# new_segments.append(xy)
|
108 |
+
|
109 |
+
xy_s = np.ones((len(semantic_mask), 3))
|
110 |
+
xy_s[:, :2] = semantic_mask
|
111 |
+
xy_s = xy_s @ M.T # transform
|
112 |
+
xy_s = (xy_s[:, :2] / xy_s[:, 2:3] if perspective else xy_s[:, :2]) # perspective rescale or affine
|
113 |
+
|
114 |
+
new_semantic_masks.append(xy_s)
|
115 |
+
|
116 |
+
# filter candidates
|
117 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
|
118 |
+
targets = targets[i]
|
119 |
+
targets[:, 1:5] = new[i]
|
120 |
+
new_segments = np.array(new_segments)[i]
|
121 |
+
new_semantic_masks = np.array(new_semantic_masks)
|
122 |
+
|
123 |
+
return im, targets, new_segments, new_semantic_masks
|
124 |
+
|
125 |
+
|
126 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
127 |
+
# Resize and pad image while meeting stride-multiple constraints
|
128 |
+
shape = im.shape[:2] # current shape [height, width]
|
129 |
+
if isinstance(new_shape, int):
|
130 |
+
new_shape = (new_shape, new_shape)
|
131 |
+
|
132 |
+
# Scale ratio (new / old)
|
133 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
134 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
135 |
+
r = min(r, 1.0)
|
136 |
+
|
137 |
+
# Compute padding
|
138 |
+
ratio = r, r # width, height ratios
|
139 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
140 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
141 |
+
if auto: # minimum rectangle
|
142 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
143 |
+
elif scaleFill: # stretch
|
144 |
+
dw, dh = 0.0, 0.0
|
145 |
+
new_unpad = (new_shape[1], new_shape[0])
|
146 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
147 |
+
|
148 |
+
dw /= 2 # divide padding into 2 sides
|
149 |
+
dh /= 2
|
150 |
+
|
151 |
+
if shape[::-1] != new_unpad: # resize
|
152 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
153 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
154 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
155 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
156 |
+
return im, ratio, (dw, dh)
|
157 |
+
|
158 |
+
|
159 |
+
def copy_paste(im, labels, segments, seg_cls, semantic_masks, p=0.5):
|
160 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
161 |
+
n = len(segments)
|
162 |
+
if p and n:
|
163 |
+
h, w, _ = im.shape # height, width, channels
|
164 |
+
im_new = np.zeros(im.shape, np.uint8)
|
165 |
+
|
166 |
+
# calculate ioa first then select indexes randomly
|
167 |
+
boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4)
|
168 |
+
ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area
|
169 |
+
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
170 |
+
n = len(indexes)
|
171 |
+
for j in random.sample(list(indexes), k=round(p * n)):
|
172 |
+
l, box, s = labels[j], boxes[j], segments[j]
|
173 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
174 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
175 |
+
seg_cls.append(l[0].astype(int))
|
176 |
+
semantic_masks.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
177 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
178 |
+
|
179 |
+
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
180 |
+
i = cv2.flip(im_new, 1).astype(bool)
|
181 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
182 |
+
|
183 |
+
return im, labels, segments, seg_cls, semantic_masks
|