Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import requests | |
import xgboost | |
import hopsworks | |
import joblib | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
mr = project.get_model_registry() | |
model = mr.get_model("titanic_modal", version=1) | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/titanic_model.pkl") | |
def titanic(pclass, sex, age, sibs, par_ch, fare, deck, embarked): | |
input_list = [] | |
input_list.append(pclass) | |
input_list.append(sex) | |
input_list.append(age) | |
input_list.append(sibs) | |
input_list.append(par_ch) | |
input_list.append(fare) | |
input_list.append(deck) | |
input_list.append(embarked) | |
# 'res' is a list of predictions returned as the label. | |
res = model.predict(np.asarray(input_list).reshape(1, -1)) | |
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want | |
# the first element. | |
return res[0] | |
demo = gr.Interface( | |
fn=titanic, | |
title="Titanic Survival Predictive Analytics", | |
description="Experiment with passenger class, sex, age, siblings, parents/children, fare, deck, and embarked to predict if a hypothetical passenger survived titanic.", | |
allow_flagging="never", | |
inputs=[ | |
gr.inputs.Number(default=0.0, label="Passenger class"), | |
gr.inputs.Number(default=0.0, label="Sex"), | |
gr.inputs.Number(default=0.0, label="Age"), | |
gr.inputs.Number(default=0.0, label="Siblings"), | |
gr.inputs.Number(default=0.0, label="Parents/Children"), | |
gr.inputs.Number(default=0.0, label="Fare"), | |
gr.inputs.Number(default=0.0, label="Deck"), | |
gr.inputs.Number(default=0.0, label="Embarked"), | |
], | |
outputs=gr.inputs.Number(label="Survived")) | |
demo.launch() | |