File size: 7,915 Bytes
c1d8208
 
 
1ba379f
9d20dd8
 
 
c1d8208
 
9d20dd8
c1d8208
 
0b40a67
c1d8208
 
 
 
87be4e2
0b40a67
c1d8208
92229a9
c1d8208
87be4e2
 
c1d8208
 
 
9d20dd8
 
 
 
 
 
 
 
 
 
92229a9
9d20dd8
c1d8208
 
92229a9
9d20dd8
c1d8208
 
87be4e2
9d20dd8
92229a9
 
 
9d20dd8
c1d8208
 
87be4e2
 
 
 
 
 
 
9d20dd8
87be4e2
 
c1d8208
 
 
 
87be4e2
 
 
 
 
c1d8208
9d20dd8
c1d8208
87be4e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a315f
0374a04
 
87be4e2
0374a04
 
 
 
87be4e2
0374a04
 
 
87be4e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1d8208
87be4e2
 
 
 
 
 
 
 
 
 
 
 
 
 
c1d8208
87be4e2
9d20dd8
 
87be4e2
c1d8208
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# -*- coding: utf-8 -*-
import os
import sys
import datetime
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
import torch
from torchvision.transforms import ToTensor, ToPILImage
import logging
# logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL)
from huggingface_hub import hf_hub_download, snapshot_download

model_name = "iimmortall/UltraFusion"
auth_token = os.getenv("HF_AUTH_TOKEN")
# greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token)  
model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app")

from ultrafusion_utils import load_model, run_ultrafusion, check_input

RUN_TIMES = 0

to_tensor = ToTensor()
to_pil = ToPILImage()
ultrafusion_pipe, flow_model = load_model()

device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=60) #[uncomment to use ZeroGPU]
def infer(
    under_expo_img,
    over_expo_img,
    num_inference_steps
):
    print(under_expo_img.size)
    print("reciving image")
    # print(under_expo_img.orig_name, over_expo_img.orig_name)

    # under_expo_img = under_expo_img.resize([1500, 1000])
    # over_expo_img = over_expo_img.resize([1500, 1000])
    under_expo_img, over_expo_img = check_input(under_expo_img, over_expo_img, max_l=1500)

    ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
    oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")
    print("num_inference_steps:", num_inference_steps)
    try:
        if num_inference_steps is None:
            num_inference_steps = 20
        num_inference_steps = int(num_inference_steps)
    except Exception as e:
        num_inference_steps = 20

    out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, 
                          steps=num_inference_steps, consistent_start=None)

    out = out.clamp(0, 1).squeeze()
    out_pil = to_pil(out)

    global RUN_TIMES
    RUN_TIMES = RUN_TIMES + 1
    print("---------------------------- Using Times---------------------------------------")
    print(f"{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: Using times: {RUN_TIMES}")

    return out_pil


def build_demo():
    examples= [
        [os.path.join("examples", img_name, "ue.jpg"), 
        os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
    ]
    IMG_W = 320
    IMG_H = 240
    css = """
    #col-container {
        margin: 0 auto;
        max-width: 640px;
    }
    """
    # max-heigh: 1500px;

    _README_ = r"""

    - This is an HDR algorithm that fuses two images with different exposures.

    - This can fuse two images with a very large exposure difference, even up to 9 stops.

    - The two input images should have the same resolution; otherwise, an error will be reported.

    - We are committed to not storing any data you upload or the results of its processing.

    """
    # - The maximum resolution we support is 1500 x 1500. If the images you upload are larger than this, they will be downscaled while maintaining the original aspect ratio.
    # - This is only for internal testing. Do not share it publicly.
    _CITE_ = r"""
    πŸ“ **Citation**

    If you find our work useful for your research or applications, please cite using this bibtex:
    ```bibtex
    @article{xxx,
    title={xxx},
    author={xxx},
    journal={arXiv preprint arXiv:xx.xx},
    year={2024}
    }
    ```

    πŸ“‹ **License**

    CC BY-NC 4.0. LICENSE.

    πŸ“§ **Contact**

    If you have any questions, feel free to open a discussion or contact us at <b>xxx@gmail.com</b>.
    """

    with gr.Blocks(css=css) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown("""<h1 style="text-align: center; font-size: 32px;"><b>UltraFusion for HDR πŸ“Έβœ¨</b></h1>""")
            # gr.Markdown("""<h1 style="text-align: center; font-size: 32px;"><b>OpenImagingLab</b></h1>""")
            gr.Markdown("""<h1 style="text-align: center; font-size: 24px;"><b>How do I use it?</b></h1>""")
            with gr.Row():
                gr.Image("ui/en-short.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
                gr.Image("ui/en-long.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
                gr.Image("ui/en-run.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
                
            with gr.Row():
                gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>βž€ Tap the center of the camera screen, then drag the β˜€οΈŽ icon downward to capture a photo with a shorter exposure.</b></h1>""")
                gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>➁ Tap the center of the camera screen, then drag the β˜€οΈŽ icon upward to capture a photo with a longer exposure.</b></h1>""")
                gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>βž‚ Upload the short and long exposure images, then click the 'Run' button to receive the result. </b></h1>""")

            gr.Markdown("""<h1 style="text-align: center; font-size: 24px;"><b>Enjoy it!</b></h1>""")
            with gr.Row():
                under_expo_img = gr.Image(label="Short Exposure Image", show_label=True,
                    image_mode="RGB",
                    sources=["upload", ],
                    width=IMG_W,
                    height=IMG_H,
                    type="pil"
                )
                over_expo_img = gr.Image(label="Long Exposure Image", show_label=True, 
                    image_mode="RGB",
                    sources=["upload", ],
                    width=IMG_W,
                    height=IMG_H,
                    type="pil"
                )
            with gr.Row():
                run_button = gr.Button("Run", variant="primary") # scale=0, 
            
            result = gr.Image(label="Result", show_label=True, 
                            type='pil', 
                            image_mode='RGB', 
                            format="png",
                            width=IMG_W*2,
                            height=IMG_H*2,
                            )
            gr.Markdown(r"""<h1 style="text-align: center; font-size: 18px;"><b>Like it? Click the button πŸ“₯ on the image to download.</b></h1>""") # width="100" height="100"  <img src="ui/download.svg" alt="download"> 
            with gr.Accordion("Advanced Settings", open=True):
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=2,
                    maximum=50,
                    step=1,
                    value=20,  # Replace with defaults that work for your model
                    interactive=True
                )
        
            gr.Examples(
                examples=examples, 
                inputs=[under_expo_img, over_expo_img, num_inference_steps], 
                label="Examples",
                # examples_per_page=10,
                fn=infer,
                cache_examples=True,
                outputs=[result,],
                )
            gr.Markdown(_README_)
            # gr.Markdown(_CITE_)
        run_button.click(fn=infer,
                        inputs=[under_expo_img, over_expo_img, num_inference_steps],
                        outputs=[result,],
                        )
    return demo

if __name__ == "__main__":
    demo = build_demo()
    demo.queue(max_size=10)
    demo.launch(share=True)
    # demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)