Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,273 Bytes
c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 0b40a67 c1d8208 0b40a67 c1d8208 0b40a67 c1d8208 92229a9 c1d8208 9d20dd8 92229a9 9d20dd8 c1d8208 92229a9 9d20dd8 c1d8208 9d20dd8 92229a9 9d20dd8 c1d8208 9d20dd8 92229a9 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 ced491a c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 ced491a c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 92229a9 c1d8208 df5a6e4 c1d8208 df5a6e4 92229a9 df5a6e4 c1d8208 92229a9 c1d8208 9d20dd8 c1d8208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# -*- coding: utf-8 -*-
import os
import sys
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
import torch
from torchvision.transforms import ToTensor, ToPILImage
import logging
# logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL)
from huggingface_hub import hf_hub_download, snapshot_download
model_name = "iimmortall/UltraFusion"
auth_token = os.getenv("HF_AUTH_TOKEN")
# greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token)
# sys.path.append(os.path.split(greet_file)[0])
model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app")
# sys.path.append(model_folder)
# sys.path.insert(0, model_folder)
# print(sys.path)
from ultrafusion_utils import load_model, run_ultrafusion, check_input
to_tensor = ToTensor()
to_pil = ToPILImage()
ultrafusion_pipe, flow_model = load_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=60) #[uncomment to use ZeroGPU]
def infer(
under_expo_img,
over_expo_img,
num_inference_steps
):
print(under_expo_img.size)
print("reciving image")
# under_expo_img = under_expo_img.resize([1500, 1000])
# over_expo_img = over_expo_img.resize([1500, 1000])
under_expo_img, over_expo_img = check_input(under_expo_img, over_expo_img, max_l=1500)
ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")
out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None)
out = out.clamp(0, 1).squeeze()
out_pil = to_pil(out)
return out_pil
examples= [
[os.path.join("examples", img_name, "ue.jpg"),
os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
]
IMG_W = 320
IMG_H = 240
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# max-heigh: 1500px;
_HEADER_ = r"""
<h1 style="text-align: center;"><b>UltraFusion</b></h1>
- This is an HDR algorithm that fuses two images with different exposures.
- This can fuse two images with a very large exposure difference, even up to 9 stops.
- The maximum resolution we support is 1500 x 1500. If the images you upload are larger than this, they will be downscaled while maintaining the original aspect ratio.
- The two input images should have the same resolution; otherwise, an error will be reported.
- This is only for internal testing. Do not share it publicly.
"""
_CITE_ = r"""
๐ **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxx,
title={xxx},
author={xxx},
journal={arXiv preprint arXiv:xx.xx},
year={2024}
}
```
๐ **License**
CC BY-NC 4.0. LICENSE.
๐ง **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>xxx@gmail.com</b>.
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(_HEADER_)
with gr.Row():
under_expo_img = gr.Image(label="UnderExposureImage", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
over_expo_img = gr.Image(label="OverExposureImage", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
with gr.Row():
run_button = gr.Button("Run", variant="primary") # scale=0,
result = gr.Image(label="Result", show_label=True,
type='pil',
image_mode='RGB',
format="png",
width=IMG_W*2,
height=IMG_H*2,
)
with gr.Accordion("Advanced Settings", open=True):
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=2,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
interactive=True
)
gr.Examples(
examples=examples,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
label="Examples",
# examples_per_page=10,
fn=infer,
cache_examples=True,
outputs=[result,],
)
# gr.Markdown(_CITE_)
run_button.click(fn=infer,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
outputs=[result,],
)
if __name__ == "__main__":
demo.queue(max_size=10)
demo.launch(share=True)
# demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)
|