File size: 5,273 Bytes
c1d8208
 
 
9d20dd8
 
 
c1d8208
 
9d20dd8
c1d8208
 
0b40a67
c1d8208
 
 
 
 
 
0b40a67
c1d8208
0b40a67
 
c1d8208
92229a9
c1d8208
 
 
 
9d20dd8
 
 
 
 
 
 
 
 
 
 
92229a9
9d20dd8
c1d8208
 
92229a9
9d20dd8
c1d8208
 
9d20dd8
92229a9
 
 
9d20dd8
c1d8208
 
9d20dd8
92229a9
c1d8208
 
 
 
 
9d20dd8
c1d8208
 
 
 
 
 
 
9d20dd8
 
 
 
 
 
c1d8208
 
ced491a
 
 
 
 
 
 
 
 
 
 
 
 
c1d8208
 
 
 
 
 
 
 
 
 
 
 
 
9d20dd8
c1d8208
9d20dd8
c1d8208
9d20dd8
c1d8208
9d20dd8
c1d8208
 
9d20dd8
c1d8208
 
ced491a
c1d8208
 
 
 
 
 
 
9d20dd8
c1d8208
 
 
 
 
 
9d20dd8
c1d8208
 
 
 
 
 
 
 
 
 
92229a9
 
 
 
 
 
 
 
 
c1d8208
 
 
df5a6e4
c1d8208
 
df5a6e4
92229a9
df5a6e4
c1d8208
 
 
92229a9
c1d8208
 
9d20dd8
 
c1d8208
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
import os
import sys
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
import torch
from torchvision.transforms import ToTensor, ToPILImage
import logging
# logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL)
from huggingface_hub import hf_hub_download, snapshot_download

model_name = "iimmortall/UltraFusion"
auth_token = os.getenv("HF_AUTH_TOKEN")
# greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token) 
# sys.path.append(os.path.split(greet_file)[0])  
model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app")
# sys.path.append(model_folder)
# sys.path.insert(0, model_folder)
# print(sys.path)

from ultrafusion_utils import load_model, run_ultrafusion, check_input

to_tensor = ToTensor()
to_pil = ToPILImage()
ultrafusion_pipe, flow_model = load_model()

device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=60) #[uncomment to use ZeroGPU]
def infer(
    under_expo_img,
    over_expo_img,
    num_inference_steps
):
    print(under_expo_img.size)
    print("reciving image")

    # under_expo_img = under_expo_img.resize([1500, 1000])
    # over_expo_img = over_expo_img.resize([1500, 1000])
    under_expo_img, over_expo_img = check_input(under_expo_img, over_expo_img, max_l=1500)

    ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
    oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")

    out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None)

    out = out.clamp(0, 1).squeeze()
    out_pil = to_pil(out)

    return out_pil


examples= [
    [os.path.join("examples", img_name, "ue.jpg"), 
     os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
]
IMG_W = 320
IMG_H = 240
css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""
# max-heigh: 1500px;

_HEADER_ = r"""
<h1 style="text-align: center;"><b>UltraFusion</b></h1>

- This is an HDR algorithm that fuses two images with different exposures.

- This can fuse two images with a very large exposure difference, even up to 9 stops.

- The maximum resolution we support is 1500 x 1500. If the images you upload are larger than this, they will be downscaled while maintaining the original aspect ratio.

- The two input images should have the same resolution; otherwise, an error will be reported.

- This is only for internal testing. Do not share it publicly.
"""

_CITE_ = r"""
๐Ÿ“ **Citation**

If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxx,
  title={xxx},
  author={xxx},
  journal={arXiv preprint arXiv:xx.xx},
  year={2024}
}
```

๐Ÿ“‹ **License**

CC BY-NC 4.0. LICENSE.

๐Ÿ“ง **Contact**

If you have any questions, feel free to open a discussion or contact us at <b>xxx@gmail.com</b>.
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(_HEADER_)
        with gr.Row():
            under_expo_img = gr.Image(label="UnderExposureImage", show_label=True,
                image_mode="RGB",
                sources=["upload", ],
                width=IMG_W,
                height=IMG_H,
                type="pil"
            )
            over_expo_img = gr.Image(label="OverExposureImage", show_label=True, 
                image_mode="RGB",
                sources=["upload", ],
                width=IMG_W,
                height=IMG_H,
                type="pil"
            )
        with gr.Row():
            run_button = gr.Button("Run", variant="primary") # scale=0, 
        
        result = gr.Image(label="Result", show_label=True, 
                          type='pil', 
                          image_mode='RGB', 
                          format="png",
                          width=IMG_W*2,
                          height=IMG_H*2,
                        )
        with gr.Accordion("Advanced Settings", open=True):
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=2,
                maximum=50,
                step=1,
                value=20,  # Replace with defaults that work for your model
                interactive=True
            )
       
        gr.Examples(
            examples=examples, 
            inputs=[under_expo_img, over_expo_img, num_inference_steps], 
            label="Examples",
            # examples_per_page=10,
            fn=infer,
            cache_examples=True,
            outputs=[result,],
            )
        # gr.Markdown(_CITE_)
    run_button.click(fn=infer,
                     inputs=[under_expo_img, over_expo_img, num_inference_steps],
                     outputs=[result,],
                    )

if __name__ == "__main__":
    demo.queue(max_size=10)
    demo.launch(share=True)
    # demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)