Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
import os | |
import sys | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces #[uncomment to use ZeroGPU] | |
# from diffusers import DiffusionPipeline | |
import torch | |
from torchvision.transforms import ToTensor, ToPILImage | |
import logging | |
# logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL) | |
from huggingface_hub import hf_hub_download, snapshot_download | |
model_name = "iimmortall/UltraFusion" | |
auth_token = os.getenv("HF_AUTH_TOKEN") | |
# greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token) | |
# sys.path.append(os.path.split(greet_file)[0]) | |
model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app") | |
# sys.path.append(model_folder) | |
# sys.path.insert(0, model_folder) | |
# print(sys.path) | |
from ultrafusion_utils import load_model, run_ultrafusion, check_input | |
to_tensor = ToTensor() | |
to_pil = ToPILImage() | |
ultrafusion_pipe, flow_model = load_model() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
#[uncomment to use ZeroGPU] | |
def infer( | |
under_expo_img, | |
over_expo_img, | |
num_inference_steps | |
): | |
print(under_expo_img.size) | |
print("reciving image") | |
# under_expo_img = under_expo_img.resize([1500, 1000]) | |
# over_expo_img = over_expo_img.resize([1500, 1000]) | |
under_expo_img, over_expo_img = check_input(under_expo_img, over_expo_img, max_l=1500) | |
ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda") | |
oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda") | |
out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None) | |
out = out.clamp(0, 1).squeeze() | |
out_pil = to_pil(out) | |
return out_pil | |
examples= [ | |
[os.path.join("examples", img_name, "ue.jpg"), | |
os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples")) | |
] | |
IMG_W = 320 | |
IMG_H = 240 | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
# max-heigh: 1500px; | |
_HEADER_ = r""" | |
<h1 style="text-align: center;"><b>UltraFusion</b></h1> | |
- This is an HDR algorithm that fuses two images with different exposures. | |
- This can fuse two images with a very large exposure difference, even up to 9 stops. | |
- The maximum resolution we support is 1500 x 1500. If the images you upload are larger than this, they will be downscaled while maintaining the original aspect ratio. | |
- The two input images should have the same resolution; otherwise, an error will be reported. | |
- This is only for internal testing. Do not share it publicly. | |
""" | |
_CITE_ = r""" | |
π **Citation** | |
If you find our work useful for your research or applications, please cite using this bibtex: | |
```bibtex | |
@article{xxx, | |
title={xxx}, | |
author={xxx}, | |
journal={arXiv preprint arXiv:xx.xx}, | |
year={2024} | |
} | |
``` | |
π **License** | |
CC BY-NC 4.0. LICENSE. | |
π§ **Contact** | |
If you have any questions, feel free to open a discussion or contact us at <b>xxx@gmail.com</b>. | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(_HEADER_) | |
with gr.Row(): | |
under_expo_img = gr.Image(label="UnderExposureImage", show_label=True, | |
image_mode="RGB", | |
sources=["upload", ], | |
width=IMG_W, | |
height=IMG_H, | |
type="pil" | |
) | |
over_expo_img = gr.Image(label="OverExposureImage", show_label=True, | |
image_mode="RGB", | |
sources=["upload", ], | |
width=IMG_W, | |
height=IMG_H, | |
type="pil" | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run", variant="primary") # scale=0, | |
result = gr.Image(label="Result", show_label=True, | |
type='pil', | |
image_mode='RGB', | |
format="png", | |
width=IMG_W*2, | |
height=IMG_H*2, | |
) | |
with gr.Accordion("Advanced Settings", open=True): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=2, | |
maximum=50, | |
step=1, | |
value=20, # Replace with defaults that work for your model | |
interactive=True | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[under_expo_img, over_expo_img, num_inference_steps], | |
label="Examples", | |
# examples_per_page=10, | |
fn=infer, | |
cache_examples=True, | |
outputs=[result,], | |
) | |
# gr.Markdown(_CITE_) | |
run_button.click(fn=infer, | |
inputs=[under_expo_img, over_expo_img, num_inference_steps], | |
outputs=[result,], | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10) | |
demo.launch(share=True) | |
# demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False) | |