UltraFusion / app.py
iimmortall's picture
Upload 6 files
c1d8208 verified
raw
history blame
6.93 kB
# -*- coding: utf-8 -*-
import os
import sys
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
import torch
from torchvision.transforms import ToTensor, ToPILImage
import logging
logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL)
from huggingface_hub import hf_hub_download, snapshot_download
model_name = "iimmortall/UltraFusion"
auth_token = os.getenv("HF_AUTH_TOKEN")
# print(auth_token)
# greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token)
# sys.path.append(os.path.split(greet_file)[0])
model_folder = snapshot_download(repo_id=model_name, token=auth_token)
# sys.path.append(model_folder)
sys.path.insert(0, model_folder)
print(sys.path)
# exit()
from ultrafusion_utils import load_model, run_ultrafusion
to_tensor = ToTensor()
to_pil = ToPILImage()
ultrafusion_pipe, flow_model = load_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=10) #[uncomment to use ZeroGPU]
def infer(
under_expo_img,
over_expo_img,
# progress=gr.Progress(track_tqdm=True),
):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
print(under_expo_img.size)
print("reciving image")
under_expo_img = under_expo_img.resize([1500, 1000])
over_expo_img = over_expo_img.resize([1500, 1000])
ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")
out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, consistent_start=None)
out = out.clamp(0, 1).squeeze()
out_pil = to_pil(out)
return out_pil
examples= [
[os.path.join("examples", img_name, "ue.jpg"),
os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
]
IMG_W = 320
IMG_H = 240
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# max-heigh: 1500px;
_HEADER_ = '''
<h2><b>Official πŸ€— UltraHDR Demo</b></h2><h2><a href='' target='_blank'><b>UltraHDR: xxx</b></a></h2>
'''
_CITE_ = r"""
πŸ“ **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxx,
title={xxx},
author={xxx},
journal={arXiv preprint arXiv:xx.xx},
year={2024}
}
```
πŸ“‹ **License**
CC BY-NC 4.0. LICENSE.
πŸ“§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>xxx@gmail.com</b>.
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # UltraHDR")
with gr.Row():
under_expo_img = gr.Image(label="UnderExposureImage", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
over_expo_img = gr.Image(label="OverExposureImage", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
with gr.Row():
run_button = gr.Button("Run", variant="primary") # scale=0,
result = gr.Image(label="Result", show_label=True,
type='pil',
image_mode='RGB',
format="png",
width=IMG_W*2,
height=IMG_H*2,
)
# with gr.Row():
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0, # Replace with defaults that work for your model
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=50,
# step=1,
# value=2, # Replace with defaults that work for your model
# )
gr.Examples(
examples=examples,
inputs=[under_expo_img, over_expo_img],
label="Examples",
# examples_per_page=10,
cache_examples=False,
# fn=infer,
)
# gr.Markdown(_CITE_)
run_button.click(fn=infer,
inputs=[under_expo_img, over_expo_img],
outputs=[result,],
)
if __name__ == "__main__":
demo.queue(max_size=10)
demo.launch(share=True)
# demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)