Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
from onnx import numpy_helper | |
import onnx | |
import os | |
from PIL import Image | |
from matplotlib.pyplot import imshow | |
import onnxruntime as rt | |
from scipy import special | |
import colorsys | |
import random | |
import gradio as gr | |
def image_preprocess(image, target_size, gt_boxes=None): | |
ih, iw = target_size | |
h, w, _ = image.shape | |
scale = min(iw/w, ih/h) | |
nw, nh = int(scale * w), int(scale * h) | |
image_resized = cv2.resize(image, (nw, nh)) | |
image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0) | |
dw, dh = (iw - nw) // 2, (ih-nh) // 2 | |
image_padded[dh:nh+dh, dw:nw+dw, :] = image_resized | |
image_padded = image_padded / 255. | |
if gt_boxes is None: | |
return image_padded | |
else: | |
gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw | |
gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh | |
return image_padded, gt_boxes | |
input_size = 416 | |
os.system("wget https://github.com/AK391/models/raw/main/vision/object_detection_segmentation/yolov4/model/yolov4.onnx") | |
# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers | |
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default | |
# based on the build flags) when instantiating InferenceSession. | |
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following: | |
# rt.InferenceSession(path/to/model, providers=['CUDAExecutionProvider']) | |
sess = rt.InferenceSession("yolov4.onnx") | |
outputs = sess.get_outputs() | |
def get_anchors(anchors_path, tiny=False): | |
'''loads the anchors from a file''' | |
with open(anchors_path) as f: | |
anchors = f.readline() | |
anchors = np.array(anchors.split(','), dtype=np.float32) | |
return anchors.reshape(3, 3, 2) | |
def postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE=[1,1,1]): | |
'''define anchor boxes''' | |
for i, pred in enumerate(pred_bbox): | |
conv_shape = pred.shape | |
output_size = conv_shape[1] | |
conv_raw_dxdy = pred[:, :, :, :, 0:2] | |
conv_raw_dwdh = pred[:, :, :, :, 2:4] | |
xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size)) | |
xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2) | |
xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1]) | |
xy_grid = xy_grid.astype(np.float) | |
pred_xy = ((special.expit(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * STRIDES[i] | |
pred_wh = (np.exp(conv_raw_dwdh) * ANCHORS[i]) | |
pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1) | |
pred_bbox = [np.reshape(x, (-1, np.shape(x)[-1])) for x in pred_bbox] | |
pred_bbox = np.concatenate(pred_bbox, axis=0) | |
return pred_bbox | |
def postprocess_boxes(pred_bbox, org_img_shape, input_size, score_threshold): | |
'''remove boundary boxs with a low detection probability''' | |
valid_scale=[0, np.inf] | |
pred_bbox = np.array(pred_bbox) | |
pred_xywh = pred_bbox[:, 0:4] | |
pred_conf = pred_bbox[:, 4] | |
pred_prob = pred_bbox[:, 5:] | |
# # (1) (x, y, w, h) --> (xmin, ymin, xmax, ymax) | |
pred_coor = np.concatenate([pred_xywh[:, :2] - pred_xywh[:, 2:] * 0.5, | |
pred_xywh[:, :2] + pred_xywh[:, 2:] * 0.5], axis=-1) | |
# # (2) (xmin, ymin, xmax, ymax) -> (xmin_org, ymin_org, xmax_org, ymax_org) | |
org_h, org_w = org_img_shape | |
resize_ratio = min(input_size / org_w, input_size / org_h) | |
dw = (input_size - resize_ratio * org_w) / 2 | |
dh = (input_size - resize_ratio * org_h) / 2 | |
pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio | |
pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio | |
# # (3) clip some boxes that are out of range | |
pred_coor = np.concatenate([np.maximum(pred_coor[:, :2], [0, 0]), | |
np.minimum(pred_coor[:, 2:], [org_w - 1, org_h - 1])], axis=-1) | |
invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]), (pred_coor[:, 1] > pred_coor[:, 3])) | |
pred_coor[invalid_mask] = 0 | |
# # (4) discard some invalid boxes | |
bboxes_scale = np.sqrt(np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1)) | |
scale_mask = np.logical_and((valid_scale[0] < bboxes_scale), (bboxes_scale < valid_scale[1])) | |
# # (5) discard some boxes with low scores | |
classes = np.argmax(pred_prob, axis=-1) | |
scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes] | |
score_mask = scores > score_threshold | |
mask = np.logical_and(scale_mask, score_mask) | |
coors, scores, classes = pred_coor[mask], scores[mask], classes[mask] | |
return np.concatenate([coors, scores[:, np.newaxis], classes[:, np.newaxis]], axis=-1) | |
def bboxes_iou(boxes1, boxes2): | |
'''calculate the Intersection Over Union value''' | |
boxes1 = np.array(boxes1) | |
boxes2 = np.array(boxes2) | |
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1]) | |
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1]) | |
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2]) | |
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:]) | |
inter_section = np.maximum(right_down - left_up, 0.0) | |
inter_area = inter_section[..., 0] * inter_section[..., 1] | |
union_area = boxes1_area + boxes2_area - inter_area | |
ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps) | |
return ious | |
def nms(bboxes, iou_threshold, sigma=0.3, method='nms'): | |
""" | |
:param bboxes: (xmin, ymin, xmax, ymax, score, class) | |
Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf | |
https://github.com/bharatsingh430/soft-nms | |
""" | |
classes_in_img = list(set(bboxes[:, 5])) | |
best_bboxes = [] | |
for cls in classes_in_img: | |
cls_mask = (bboxes[:, 5] == cls) | |
cls_bboxes = bboxes[cls_mask] | |
while len(cls_bboxes) > 0: | |
max_ind = np.argmax(cls_bboxes[:, 4]) | |
best_bbox = cls_bboxes[max_ind] | |
best_bboxes.append(best_bbox) | |
cls_bboxes = np.concatenate([cls_bboxes[: max_ind], cls_bboxes[max_ind + 1:]]) | |
iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4]) | |
weight = np.ones((len(iou),), dtype=np.float32) | |
assert method in ['nms', 'soft-nms'] | |
if method == 'nms': | |
iou_mask = iou > iou_threshold | |
weight[iou_mask] = 0.0 | |
if method == 'soft-nms': | |
weight = np.exp(-(1.0 * iou ** 2 / sigma)) | |
cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight | |
score_mask = cls_bboxes[:, 4] > 0. | |
cls_bboxes = cls_bboxes[score_mask] | |
return best_bboxes | |
def read_class_names(class_file_name): | |
'''loads class name from a file''' | |
names = {} | |
with open(class_file_name, 'r') as data: | |
for ID, name in enumerate(data): | |
names[ID] = name.strip('\n') | |
return names | |
def draw_bbox(image, bboxes, classes=read_class_names("coco.names"), show_label=True): | |
""" | |
bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates. | |
""" | |
num_classes = len(classes) | |
image_h, image_w, _ = image.shape | |
hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)] | |
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) | |
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors)) | |
random.seed(0) | |
random.shuffle(colors) | |
random.seed(None) | |
for i, bbox in enumerate(bboxes): | |
coor = np.array(bbox[:4], dtype=np.int32) | |
fontScale = 0.5 | |
score = bbox[4] | |
class_ind = int(bbox[5]) | |
bbox_color = colors[class_ind] | |
bbox_thick = int(0.6 * (image_h + image_w) / 600) | |
c1, c2 = (coor[0], coor[1]), (coor[2], coor[3]) | |
cv2.rectangle(image, c1, c2, bbox_color, bbox_thick) | |
if show_label: | |
bbox_mess = '%s: %.2f' % (classes[class_ind], score) | |
t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick//2)[0] | |
cv2.rectangle(image, c1, (c1[0] + t_size[0], c1[1] - t_size[1] - 3), bbox_color, -1) | |
cv2.putText(image, bbox_mess, (c1[0], c1[1]-2), cv2.FONT_HERSHEY_SIMPLEX, | |
fontScale, (0, 0, 0), bbox_thick//2, lineType=cv2.LINE_AA) | |
return image | |
def inference(img): | |
original_image = cv2.imread(img) | |
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) | |
original_image_size = original_image.shape[:2] | |
image_data = image_preprocess(np.copy(original_image), [input_size, input_size]) | |
image_data = image_data[np.newaxis, ...].astype(np.float32) | |
print("Preprocessed image shape:",image_data.shape) # shape of the preprocessed input | |
output_names = list(map(lambda output: output.name, outputs)) | |
input_name = sess.get_inputs()[0].name | |
detections = sess.run(output_names, {input_name: image_data}) | |
print("Output shape:", list(map(lambda detection: detection.shape, detections))) | |
ANCHORS = "./yolov4_anchors.txt" | |
STRIDES = [8, 16, 32] | |
XYSCALE = [1.2, 1.1, 1.05] | |
ANCHORS = get_anchors(ANCHORS) | |
STRIDES = np.array(STRIDES) | |
pred_bbox = postprocess_bbbox(detections, ANCHORS, STRIDES, XYSCALE) | |
bboxes = postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) | |
bboxes = nms(bboxes, 0.213, method='nms') | |
image = draw_bbox(original_image, bboxes) | |
image = Image.fromarray(image) | |
return image | |
title="YOLOv4" | |
description="YOLOv4 optimizes the speed and accuracy of object detection. It is two times faster than EfficientDet. It improves YOLOv3's AP and FPS by 10% and 12%, respectively, with mAP50 of 52.32 on the COCO 2017 dataset and FPS of 41.7 on Tesla 100." | |
examples=[["example.png"]] | |
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="pil"),title=title,description=description,examples=examples).launch() | |