Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import torch | |
from .model import gaussian_diffusion as gd | |
from .model.dpm_solver import DPM_Solver, NoiseScheduleFlow, NoiseScheduleVP, model_wrapper | |
def DPMS( | |
model, | |
condition, | |
uncondition, | |
cfg_scale, | |
pag_scale=1.0, | |
pag_applied_layers=None, | |
model_type="noise", # or "x_start" or "v" or "score", "flow" | |
noise_schedule="linear", | |
guidance_type="classifier-free", | |
model_kwargs=None, | |
diffusion_steps=1000, | |
schedule="VP", | |
interval_guidance=None, | |
): | |
if pag_applied_layers is None: | |
pag_applied_layers = [] | |
if model_kwargs is None: | |
model_kwargs = {} | |
if interval_guidance is None: | |
interval_guidance = [0, 1.0] | |
betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) | |
## 1. Define the noise schedule. | |
if schedule == "VP": | |
noise_schedule = NoiseScheduleVP(schedule="discrete", betas=betas) | |
elif schedule == "FLOW": | |
noise_schedule = NoiseScheduleFlow(schedule="discrete_flow") | |
## 2. Convert your discrete-time `model` to the continuous-time | |
## noise prediction model. Here is an example for a diffusion model | |
## `model` with the noise prediction type ("noise") . | |
model_fn = model_wrapper( | |
model, | |
noise_schedule, | |
model_type=model_type, | |
model_kwargs=model_kwargs, | |
guidance_type=guidance_type, | |
pag_scale=pag_scale, | |
pag_applied_layers=pag_applied_layers, | |
condition=condition, | |
unconditional_condition=uncondition, | |
guidance_scale=cfg_scale, | |
interval_guidance=interval_guidance, | |
) | |
## 3. Define dpm-solver and sample by multistep DPM-Solver. | |
return DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |