Spaces:
Sleeping
Sleeping
File size: 5,438 Bytes
d276afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from ldm.util import instantiate_from_config
from ldm.models.diffusion.scheduling_lcm import LCMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from torch.utils.data import DataLoader
from tqdm import tqdm
from icecream import ic
from pathlib import Path
import soundfile as sf
import yaml
import datetime
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
# from pytorch_memlab import LineProfiler,profile
import gradio
def load_model_from_config(config, ckpt = None, verbose=True):
model = instantiate_from_config(config.model)
if ckpt:
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
sd = pl_sd["state_dict"]
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
else:
print(f"Note chat no ckpt is loaded !!!")
model.cuda()
model.eval()
return model
class GenSamples:
def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None) -> None:
self.sampler = sampler
self.model = model
self.outpath = outpath
if save_wav:
assert vocoder is not None
self.vocoder = vocoder
self.save_mel = save_mel
self.save_wav = save_wav
self.channel_dim = self.model.channels
self.original_inference_steps = original_inference_steps
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
uc = None
record_dicts = []
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
# return record_dicts
emptycap = {'ori_caption':1*[""],'struct_caption':1*[""]}
uc = self.model.get_learned_conditioning(emptycap)
for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
for k,v in prompt.items():
prompt[k] = 1 * [v]
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
if self.channel_dim>0:
shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x)
else:
shape = [20, 312]
samples_ddim, _ = self.sampler.sample(S=2,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
guidance_scale=5,
original_inference_steps=self.original_inference_steps
)
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
for idx,spec in enumerate(x_samples_ddim):
spec = spec.squeeze(0).cpu().numpy()
record_dict = {'caption':prompt['ori_caption'][0]}
if self.save_mel:
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
np.save(mel_path,spec)
record_dict['mel_path'] = mel_path
if self.save_wav:
wav = self.vocoder.vocode(spec)
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
soundfile.write(wav_path, wav, 16000)
record_dict['audio_path'] = wav_path
record_dicts.append(record_dict)
return record_dicts
def infer(ori_prompt):
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
config = OmegaConf.load("configs/audiolcm.yaml")
# print("-------quick debug no load ckpt---------")
# model = instantiate_from_config(config['model'])# for quick debug
model = load_model_from_config(config, "./model/000184.ckpt")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = LCMSampler(model)
os.makedirs("results/test", exist_ok=True)
vocoder = VocoderBigVGAN("./vocoder/bigvnat16k93.5w",device)
generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps)
csv_dicts = []
with torch.no_grad():
with model.ema_scope():
wav_name = f'{prompt.strip().replace(" ", "-")}'
generator.gen_test_sample(prompt,wav_name=wav_name)
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
return "results/test/"+wav_name+"_0.wav"
def my_inference_function(prompt_oir):
file_path = infer(prompt_oir)
return file_path
gradio_interface = gradio.Interface(
fn = my_inference_function,
inputs = "text",
outputs = "audio"
)
gradio_interface.launch() |