Spaces:
Build error
Build error
fixed bug
Browse files
llm_toolkit/tune_logical_reasoning.py
CHANGED
@@ -6,8 +6,6 @@ from trl import SFTTrainer
|
|
6 |
from transformers import TrainingArguments
|
7 |
|
8 |
from dotenv import find_dotenv, load_dotenv
|
9 |
-
from llm_toolkit.logical_reasoning_utils import *
|
10 |
-
from llm_toolkit.llm_utils import *
|
11 |
|
12 |
found_dotenv = find_dotenv(".env")
|
13 |
|
@@ -20,11 +18,14 @@ path = os.path.dirname(found_dotenv)
|
|
20 |
print(f"Adding {path} to sys.path")
|
21 |
sys.path.append(path)
|
22 |
|
|
|
|
|
|
|
23 |
model_name = os.getenv("MODEL_NAME")
|
24 |
token = os.getenv("HF_TOKEN") or None
|
25 |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
26 |
-
local_model = os.getenv("LOCAL_MODEL")
|
27 |
-
hub_model = os.getenv("HUB_MODEL")
|
28 |
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
|
29 |
data_path = os.getenv("LOGICAL_REASONING_DATA_PATH")
|
30 |
results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH")
|
@@ -140,6 +141,9 @@ print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
|
140 |
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
141 |
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
142 |
|
|
|
|
|
|
|
143 |
print("Evaluating fine-tuned model: " + model_name)
|
144 |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
145 |
predictions = eval_model(model, tokenizer, datasets["test"])
|
@@ -160,3 +164,6 @@ save_results(
|
|
160 |
|
161 |
metrics = calc_metrics(datasets["test"]["label"], predictions, debug=True)
|
162 |
print(metrics)
|
|
|
|
|
|
|
|
6 |
from transformers import TrainingArguments
|
7 |
|
8 |
from dotenv import find_dotenv, load_dotenv
|
|
|
|
|
9 |
|
10 |
found_dotenv = find_dotenv(".env")
|
11 |
|
|
|
18 |
print(f"Adding {path} to sys.path")
|
19 |
sys.path.append(path)
|
20 |
|
21 |
+
from llm_toolkit.logical_reasoning_utils import *
|
22 |
+
from llm_toolkit.llm_utils import *
|
23 |
+
|
24 |
model_name = os.getenv("MODEL_NAME")
|
25 |
token = os.getenv("HF_TOKEN") or None
|
26 |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
27 |
+
local_model = os.getenv("LOCAL_MODEL") or "gemma-2-9b-it-lora"
|
28 |
+
hub_model = os.getenv("HUB_MODEL") or "inflaton-ai/gemma-2-9b-it-lora"
|
29 |
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
|
30 |
data_path = os.getenv("LOGICAL_REASONING_DATA_PATH")
|
31 |
results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH")
|
|
|
141 |
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
142 |
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
143 |
|
144 |
+
model.save_pretrained(local_model) # Local saving
|
145 |
+
tokenizer.save_pretrained(local_model)
|
146 |
+
|
147 |
print("Evaluating fine-tuned model: " + model_name)
|
148 |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
149 |
predictions = eval_model(model, tokenizer, datasets["test"])
|
|
|
164 |
|
165 |
metrics = calc_metrics(datasets["test"]["label"], predictions, debug=True)
|
166 |
print(metrics)
|
167 |
+
|
168 |
+
model.push_to_hub(hub_model, token=token) # Online saving
|
169 |
+
tokenizer.push_to_hub(hub_model, token=token) # Online saving
|