File size: 4,410 Bytes
7f9d16c 815128e c2cb992 7f9d16c c2cb992 815128e 7f9d16c 815128e e182c41 2826548 7f9d16c e182c41 815128e c2cb992 2826548 e182c41 815128e e182c41 815128e e182c41 815128e 7f9d16c c2cb992 7f9d16c 815128e 7f9d16c 815128e c2cb992 e182c41 2826548 e182c41 2826548 e182c41 2826548 e182c41 2826548 e182c41 815128e c2cb992 e182c41 815128e c2cb992 e182c41 815128e 7f9d16c e182c41 815128e 7f9d16c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# project/test.py
import os
import unittest
from timeit import default_timer as timer
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import HumanMessage
from app_modules.init import app_init
from app_modules.llm_chat_chain import ChatChain
from app_modules.llm_loader import LLMLoader
from app_modules.utils import get_device_types, print_llm_response
class TestLLMLoader(unittest.TestCase):
question = "What's the capital city of Malaysia?"
def run_test_case(self, llm_model_type, query):
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4")
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types()
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}")
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}")
llm_loader = LLMLoader(llm_model_type)
start = timer()
llm_loader.init(
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type
)
end = timer()
print(f"Model loaded in {end - start:.3f}s")
result = llm_loader.llm(
[HumanMessage(content=query)] if llm_model_type == "openai" else query
)
end2 = timer()
print(f"Inference completed in {end2 - end:.3f}s")
print(result)
def test_openai(self):
self.run_test_case("openai", self.question)
def test_llamacpp(self):
self.run_test_case("llamacpp", self.question)
def test_gpt4all_j(self):
self.run_test_case("gpt4all-j", self.question)
def test_huggingface(self):
self.run_test_case("huggingface", self.question)
class TestChatChain(unittest.TestCase):
question = "What's the capital city of Malaysia?"
def run_test_case(self, llm_model_type, query):
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4")
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types()
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}")
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}")
llm_loader = LLMLoader(llm_model_type)
start = timer()
llm_loader.init(
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type
)
chat = ChatChain(llm_loader)
end = timer()
print(f"Model loaded in {end - start:.3f}s")
inputs = {"question": query}
result = chat.call_chain(inputs, None)
end2 = timer()
print(f"Inference completed in {end2 - end:.3f}s")
print(result)
inputs = {"question": "how many people?"}
result = chat.call_chain(inputs, None)
end3 = timer()
print(f"Inference completed in {end3 - end2:.3f}s")
print(result)
def test_openai(self):
self.run_test_case("openai", self.question)
def test_llamacpp(self):
self.run_test_case("llamacpp", self.question)
def test_gpt4all_j(self):
self.run_test_case("gpt4all-j", self.question)
def test_huggingface(self):
self.run_test_case("huggingface", self.question)
class TestQAChain(unittest.TestCase):
qa_chain: any
question = "What's deep learning?"
def run_test_case(self, llm_model_type, query):
start = timer()
os.environ["LLM_MODEL_TYPE"] = llm_model_type
qa_chain = app_init()[1]
end = timer()
print(f"App initialized in {end - start:.3f}s")
chat_history = []
inputs = {"question": query, "chat_history": chat_history}
result = qa_chain.call_chain(inputs, None)
end2 = timer()
print(f"Inference completed in {end2 - end:.3f}s")
print_llm_response(result)
chat_history.append((query, result["answer"]))
inputs = {"question": "tell me more", "chat_history": chat_history}
result = qa_chain.call_chain(inputs, None)
end3 = timer()
print(f"Inference completed in {end3 - end2:.3f}s")
print(result)
def test_openai(self):
self.run_test_case("openai", self.question)
def test_llamacpp(self):
self.run_test_case("llamacpp", self.question)
def test_gpt4all_j(self):
self.run_test_case("gpt4all-j", self.question)
def test_huggingface(self):
self.run_test_case("huggingface", self.question)
if __name__ == "__main__":
unittest.main()
|