File size: 4,053 Bytes
3860729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07320d0
3860729
 
c73d190
 
 
3860729
 
 
 
 
a69b127
a37d279
 
fddc7fb
3860729
a69b127
a37d279
 
 
 
 
 
 
 
a69b127
3860729
c73d190
 
 
 
 
 
 
 
 
3860729
 
 
 
 
c73d190
 
 
 
 
 
3860729
 
6c91c84
c73d190
 
 
6c91c84
c73d190
 
 
6c91c84
c73d190
 
3860729
 
c73d190
3860729
6c91c84
 
c73d190
 
3860729
6c91c84
fddc7fb
6c91c84
 
 
 
 
 
 
 
fddc7fb
 
 
6c91c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69b127
a37d279
c73d190
fddc7fb
3860729
 
c73d190
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import sys
import torch
from dotenv import find_dotenv, load_dotenv

found_dotenv = find_dotenv(".env")

if len(found_dotenv) == 0:
    found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)

path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)

from llm_toolkit.llm_utils import *
from llm_toolkit.translation_utils import *

device = check_gpu()
is_cuda = torch.cuda.is_available()

model_name = os.getenv("MODEL_NAME")
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
data_path = os.getenv("DATA_PATH")
results_path = os.getenv("RESULTS_PATH")
batch_size = int(os.getenv("BATCH_SIZE", 1))
use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true"
max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048))
start_num_shots = int(os.getenv("START_NUM_SHOTS", 0))

print(
    model_name,
    adapter_name_or_path,
    load_in_4bit,
    data_path,
    results_path,
    use_english_datasets,
    max_new_tokens,
    batch_size,
)

if is_cuda:
    torch.cuda.empty_cache()
    gpu_stats = torch.cuda.get_device_properties(0)
    start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
    max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
    print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
    print(f"{start_gpu_memory} GB of memory reserved.")

    torch.cuda.empty_cache()

model, tokenizer = load_model(
    model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
)

if is_cuda:
    gpu_stats = torch.cuda.get_device_properties(0)
    start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
    max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
    print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
    print(f"{start_gpu_memory} GB of memory reserved.")


def on_num_shots_step_completed(model_name, dataset, predictions):
    save_results(
        model_name,
        results_path,
        dataset,
        predictions,
    )

    metrics = calc_metrics(dataset["english"], predictions, debug=True)
    print(f"{model_name} metrics: {metrics}")


if adapter_name_or_path is not None:
    model_name += "/" + adapter_name_or_path.split("/")[-1]


def evaluate_model_with_num_shots(
    model,
    tokenizer,
    model_name,
    data_path,
    start_num_shots=0,
    range_num_shots=[0, 1, 3, 5, 10, 50],
    batch_size=1,
    max_new_tokens=2048,
    device="cuda",
):
    print(f"Evaluating model: {model_name} on {device}")

    for num_shots in range_num_shots:
        if num_shots < start_num_shots:
            continue

        print(f"*** Evaluating with num_shots: {num_shots}")

        datasets = load_translation_dataset(data_path, tokenizer, num_shots=num_shots)
        print_row_details(datasets["test"].to_pandas())

        predictions = eval_model(
            model,
            tokenizer,
            datasets["test"],
            device=device,
            batch_size=batch_size,
            max_new_tokens=max_new_tokens,
        )

        model_name_with_rp = f"{model_name}/shots-{num_shots:02d}"

        try:
            on_num_shots_step_completed(
                model_name_with_rp,
                datasets["test"],
                predictions,
            )
        except Exception as e:
            print(e)


evaluate_model_with_num_shots(
    model,
    tokenizer,
    model_name,
    data_path,
    batch_size=batch_size,
    max_new_tokens=max_new_tokens,
    device=device,
    start_num_shots=start_num_shots,
)

if is_cuda:
    gpu_stats = torch.cuda.get_device_properties(0)
    start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
    max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
    print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
    print(f"{start_gpu_memory} GB of memory reserved.")