Spaces:
Build error
Build error
File size: 4,053 Bytes
3860729 07320d0 3860729 c73d190 3860729 a69b127 a37d279 fddc7fb 3860729 a69b127 a37d279 a69b127 3860729 c73d190 3860729 c73d190 3860729 6c91c84 c73d190 6c91c84 c73d190 6c91c84 c73d190 3860729 c73d190 3860729 6c91c84 c73d190 3860729 6c91c84 fddc7fb 6c91c84 fddc7fb 6c91c84 a69b127 a37d279 c73d190 fddc7fb 3860729 c73d190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import sys
import torch
from dotenv import find_dotenv, load_dotenv
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)
from llm_toolkit.llm_utils import *
from llm_toolkit.translation_utils import *
device = check_gpu()
is_cuda = torch.cuda.is_available()
model_name = os.getenv("MODEL_NAME")
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
data_path = os.getenv("DATA_PATH")
results_path = os.getenv("RESULTS_PATH")
batch_size = int(os.getenv("BATCH_SIZE", 1))
use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true"
max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048))
start_num_shots = int(os.getenv("START_NUM_SHOTS", 0))
print(
model_name,
adapter_name_or_path,
load_in_4bit,
data_path,
results_path,
use_english_datasets,
max_new_tokens,
batch_size,
)
if is_cuda:
torch.cuda.empty_cache()
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
torch.cuda.empty_cache()
model, tokenizer = load_model(
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
)
if is_cuda:
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
def on_num_shots_step_completed(model_name, dataset, predictions):
save_results(
model_name,
results_path,
dataset,
predictions,
)
metrics = calc_metrics(dataset["english"], predictions, debug=True)
print(f"{model_name} metrics: {metrics}")
if adapter_name_or_path is not None:
model_name += "/" + adapter_name_or_path.split("/")[-1]
def evaluate_model_with_num_shots(
model,
tokenizer,
model_name,
data_path,
start_num_shots=0,
range_num_shots=[0, 1, 3, 5, 10, 50],
batch_size=1,
max_new_tokens=2048,
device="cuda",
):
print(f"Evaluating model: {model_name} on {device}")
for num_shots in range_num_shots:
if num_shots < start_num_shots:
continue
print(f"*** Evaluating with num_shots: {num_shots}")
datasets = load_translation_dataset(data_path, tokenizer, num_shots=num_shots)
print_row_details(datasets["test"].to_pandas())
predictions = eval_model(
model,
tokenizer,
datasets["test"],
device=device,
batch_size=batch_size,
max_new_tokens=max_new_tokens,
)
model_name_with_rp = f"{model_name}/shots-{num_shots:02d}"
try:
on_num_shots_step_completed(
model_name_with_rp,
datasets["test"],
predictions,
)
except Exception as e:
print(e)
evaluate_model_with_num_shots(
model,
tokenizer,
model_name,
data_path,
batch_size=batch_size,
max_new_tokens=max_new_tokens,
device=device,
start_num_shots=start_num_shots,
)
if is_cuda:
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
|