File size: 5,732 Bytes
0f06270
 
 
7b71f79
83aa28d
0f06270
83aa28d
0f06270
 
 
 
 
 
 
 
 
 
 
 
 
 
83aa28d
0f06270
 
 
 
83aa28d
 
 
0f06270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b71f79
 
 
 
0f06270
83aa28d
0f06270
 
 
 
7b71f79
0f06270
7b71f79
 
 
 
 
 
 
 
 
 
0f06270
7b71f79
 
 
 
 
 
 
0f06270
7b71f79
0f06270
7b71f79
0f06270
7b71f79
 
 
 
 
0f06270
 
7b71f79
0f06270
7b71f79
0f06270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b71f79
0f06270
7b71f79
0f06270
640a737
7b71f79
 
 
 
 
0f06270
 
 
7b71f79
0f06270
7b71f79
 
 
 
 
 
 
 
 
 
 
 
 
 
640a737
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import sys
import evaluate
import gradio as gr
from huggingface_hub import InferenceClient, login
from dotenv import find_dotenv, load_dotenv
from huggingface_hub import login

found_dotenv = find_dotenv(".env")

if len(found_dotenv) == 0:
    found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)

path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)

from llm_toolkit.llm_utils import *
from llm_toolkit.translation_utils import *
from eval_modules.calc_repetitions_v2e import detect_repetitions

model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct"
num_shots = int(os.getenv("NUM_SHOTS", 10))
data_path = os.getenv("DATA_PATH")
hf_token = os.getenv("HF_TOKEN")

login(token=hf_token, add_to_git_credential=True)

comet = evaluate.load("comet", config_name="Unbabel/wmt22-cometkiwi-da", gpus=1)
meteor = evaluate.load("meteor")
bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")


def calc_perf_scores(prediction, source, reference, debug=False):
    if debug:
        print("prediction:", prediction)
        print("source:", source)
        print("reference:", reference)

    if reference:
        bleu_scores = bleu.compute(
            predictions=[prediction], references=[reference], max_order=1
        )
        rouge_scores = rouge.compute(predictions=[prediction], references=[reference])
        rouge_scores = rouge.compute(predictions=[prediction], references=[reference])
        meteor_scores = meteor.compute(predictions=[prediction], references=[reference])
    
    comet_metric = comet.compute(
        predictions=[prediction], sources=[source], references=[reference]
    )

    result = {"bleu_scores": bleu_scores, "rouge_scores": rouge_scores, "meteor_scores":meteor_scores, "comet_scores": comet_metric}

    if debug:
        print("result:", result)

    return result

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = InferenceClient(model_name, token=hf_token)

datasets = load_translation_dataset(data_path)
print_row_details(datasets["test"].to_pandas())
translation_prompt = get_few_shot_prompt(datasets["train"], num_shots)

examples = [[row["chinese"]] for row in datasets["test"]][:5]

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]
    source = message

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": translation_prompt.format(input=message)})

    partial_text = ""

    finish_reason = None
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        frequency_penalty=None,  # frequency_penalty,
        presence_penalty=None,  # presence_penalty,
        top_p=top_p,
        seed=42,
    ):
        finish_reason = message.choices[0].finish_reason
        # print("finish_reason:", finish_reason)

        if finish_reason is None:
            new_text = message.choices[0].delta.content
            partial_text += new_text
            yield partial_text
        else:
            break

    answer = partial_text
    (whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer, debug=True)
    partial_text += "\n\nRepetition Metrics:\n"
    partial_text += f"1. Whitespace Score: {whitespace_score:.3f}\n"
    partial_text += f"1. Repetition Score: {repetition_score:.3f}\n"
    partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n"
    partial_text += (
        f"1. Non-Repetitive Ratio: {1 - total_repetitions / len(answer):.3f}\n"
    )

    partial_text += "\n\n Performance Metrics:\n"

    if [source]  in examples:
        idx = examples.index([source])
        reference = datasets["test"]["english"][idx]
    else:
        reference = ""

    scores = calc_perf_scores(answer, source, reference, debug=True)

    partial_text += f'1. COMET: {scores["comet_scores"]["mean_score"]:.3f}\n'
    if reference:
        partial_text += f'1. METEOR: {scores["meteor_scores"]["meteor"]:.3f}\n'
        partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n'
        partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n'
        partial_text += f"\n\nGround truth: {reference}\n"

    partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n"

    yield partial_text

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    examples=examples,
    cache_examples=False,
    textbox=gr.Textbox(placeholder="Enter your Chinese sentence for translation"),
    additional_inputs=[
        gr.Textbox(value="You are a helpful assistant that translates Chinese to English.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()