inflaton's picture
fine-tuned checkpoints
e1e71f5
|
raw
history blame
1.85 kB
metadata
base_model: shenzhi-wang/Llama3.1-70B-Chinese-Chat
library_name: peft
license: other
tags:
  - llama-factory
  - lora
  - generated_from_trainer
model-index:
  - name: Llama3.1-70B-Chinese-Chat
    results: []

Llama3.1-70B-Chinese-Chat

This model is a fine-tuned version of shenzhi-wang/Llama3.1-70B-Chinese-Chat on the alpaca_mac dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 6.0

Training results

Training Loss Epoch Step Validation Loss
1.4367 0.9982 70 1.3731
1.2601 1.9964 140 1.3131
0.8929 2.9947 210 1.4369
0.383 3.9929 280 1.7250
0.1431 4.9911 350 2.0897
0.0691 5.9893 420 2.5071

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1