machine-translation / eval_modules /calc_repetitions_v2e.py
dh-mc's picture
v2e results
83aa28d
raw
history blame
43.1 kB
import os
import re
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import seaborn as sns
import nltk
import evaluate
import traceback
bert_score = evaluate.load("bertscore")
meteor = evaluate.load("meteor")
print(f"loading: {__file__}")
# pattern_non_word_char_repetition = re.compile(r"\s{5,}")
# pattern_text_repetitions = re.compile(r"(.{5}.*)\s*((\1)\s*)+", re.M | re.DOTALL)
# final version
pattern_non_word_char_repetition = re.compile(r"[\s\W]{5,}")
pattern_text_repetitions = re.compile(
r"(?P<repeat>.{5}.*?)(?:[\s\W]*(?P=repeat))+", re.M | re.DOTALL | re.IGNORECASE
)
# Explanation of the Regex Pattern:
# (?P<repeat>.{5}.*?): Captures any sequence of characters with minimal length of 5 and names this group repeat.
# .*?: Matches zero or more characters, non-greedily (as few as possible).
# (?:[\s\W]+(?P=repeat))+: A non-capturing group that matches one or more repetitions of:
# [\s\W]+: One or more whitespace or non-word characters (spaces, punctuation, etc.).
# (?P=repeat): A backreference to the named group repeat.
def del_non_word_char_repetition(text, debug=False):
count = 0
if isinstance(text, str):
if debug:
print("----detect non-word characters repetition----")
count = len(text)
text = pattern_non_word_char_repetition.sub("\t", text)
count -= len(text)
if debug and count:
print(f"removed non-word characters repetition: {count}")
return text, count
# final version for repetition detection
def detect_text_repetitions(text, debug=False):
count = 0
if isinstance(text, str):
if debug:
print("----detect text repetitions----")
matches = pattern_text_repetitions.finditer(text)
for match in matches:
if debug:
print(match)
for groupNum in range(0, len(match.groups())):
groupNum = groupNum + 1
print(
"Group {groupNum} found at {start}-{end}: `{group}`".format(
groupNum=groupNum,
start=match.start(groupNum),
end=match.end(groupNum),
group=match.group(groupNum),
)
)
start, end = match.span()
count += end - start - len(match.group(1))
return count
def detect_repetitions(text, debug=False):
if isinstance(text, str) is False:
return 0, 0, 0
text, count_non_word_char_repetition = del_non_word_char_repetition(
text, debug=debug
)
count_text_repetitions = detect_text_repetitions(text, debug=debug)
total_repetitions = count_non_word_char_repetition + count_text_repetitions
result = (count_non_word_char_repetition, count_text_repetitions, total_repetitions)
if debug:
print(result)
return result
def detect_scores(
row, debug=False, answer_col="answer", ground_truth_col="ground_truth"
):
newline_score, repetition_score, total_repetitions = detect_repetitions(
row[answer_col], debug=debug
)
if ground_truth_col:
ground_truth_newline_score, ground_truth_repetition_score, _ = (
detect_repetitions(row[ground_truth_col], debug=debug)
)
newline_score -= ground_truth_newline_score
if newline_score < 0:
newline_score = 0
repetition_score -= ground_truth_repetition_score
if repetition_score < 0:
repetition_score = 0
total_repetitions = newline_score + repetition_score
return pd.Series([newline_score, repetition_score, total_repetitions])
def load_with_newline_and_repetition_scores(result_file, force_recalculate=False):
print(f"loading result file: {result_file}")
df = pd.read_csv(result_file, comment="#", on_bad_lines="warn")
if (
force_recalculate
or "newline_score" not in df.columns
or "repetition_score" not in df.columns
or "total_repetitions" not in df.columns
or "nrr" not in df.columns
or "rr" not in df.columns
):
if (
force_recalculate
or "newline_score" not in df.columns
or "repetition_score" not in df.columns
or "total_repetitions" not in df.columns
):
df[["newline_score", "repetition_score", "total_repetitions"]] = df.apply(
detect_scores, axis=1
)
df["answer_len"] = df["answer"].apply(
lambda x: len(x) if isinstance(x, str) else 0
)
df["nrr"] = df.apply(
lambda x: (
1
if x["answer_len"] == 0
else 1 - (x["newline_score"] + x["repetition_score"]) / x["answer_len"]
),
axis=1,
)
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
df.to_csv(result_file, index=False)
return df
def replace_last(source_string, old_string, new_string):
head, _sep, tail = source_string.rpartition(old_string)
return head + new_string + tail
def load_for_repetition_penalty(
csv_result_file, repetition_penalty, force_recalculate=False
):
result_file = replace_last(
csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}.csv"
)
return load_with_newline_and_repetition_scores(
result_file, force_recalculate=force_recalculate
)
def calc_adjusted_performance(f, r, l=1):
n = 1 - r / l if l > 0 else 0
return f * n * n * n
def calculate_adjusted_performance(row):
r = row["total_repetitions"]
l = row["answer_len"]
adjusted_precision = calc_adjusted_performance(row["precision"], r, l)
adjusted_recall = calc_adjusted_performance(row["recall"], r, l)
return pd.Series([adjusted_precision, adjusted_recall])
def load_performance_df(csv_result_file, repetition_penalty):
result_file = replace_last(
csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}-t2_evaluated.json"
)
result_file = result_file.replace("/results/", "/eval/")
print(f"loading json file: {result_file}")
df = pd.read_json(result_file)
return df
def calculate_performance_score(
csv_result_file, repetition_penalty, force_recalculate=False
):
result_file = replace_last(
csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv"
)
if os.path.exists(result_file):
print(f"loading result file: {result_file}")
df = load_with_newline_and_repetition_scores(
result_file, force_recalculate=force_recalculate
)
else:
print(f"re-creating result file: {result_file}")
df = pd.DataFrame()
force_recalculate = True
if force_recalculate or "f2" in df.columns or "f1" not in df.columns:
try:
perf_df = load_performance_df(csv_result_file, repetition_penalty)
df.drop(
columns=[
"precision",
"recall",
"f1",
"f2",
"entities_in_answer",
"entities_in_question",
"word_count",
],
errors="ignore",
inplace=True,
)
df["id"] = perf_df["id"]
df["question"] = perf_df["question"]
df["answer"] = perf_df["pred_answer"]
df["word_count"] = df["answer"].apply(
lambda x: len(nltk.word_tokenize(x)) if isinstance(x, str) else 0
)
df["ground_truth"] = perf_df["ground_truth"]
df["eval_gemini_1.0_pro"] = perf_df["eval_gemini_1.0_pro"]
df["precision"] = perf_df["score"].apply(lambda x: x[0])
df["recall"] = perf_df["score"].apply(lambda x: x[1])
df["f1"] = perf_df["score"].apply(lambda x: x[2])
except Exception as e:
print(f"\tignored error: {e}")
# traceback.print_exc()
df[["newline_score", "repetition_score", "total_repetitions"]] = df.apply(
detect_scores, axis=1
)
df["answer_len"] = df["answer"].apply(
lambda x: len(x) if isinstance(x, str) else 0
)
df[["adjusted_precision", "adjusted_recall"]] = df.apply(
calculate_adjusted_performance, axis=1
)
df.to_csv(result_file, index=False)
print(f"performance scores saved to result file: {result_file}")
# print(f"df len: {len(df)}")
return df
def adjust_perf_scores_with_repetition_penalty(result, precision, recall):
newline_score = [
df["newline_score"].mean() for df in result["df_list_repetition_penalty"]
]
repetition_score = [
df["repetition_score"].mean() for df in result["df_list_repetition_penalty"]
]
answer_len = [
df["answer_len"].mean() for df in result["df_list_repetition_penalty"]
]
precision = [
calc_adjusted_performance(f, n + r, l)
for f, n, r, l in zip(precision, newline_score, repetition_score, answer_len)
]
recall = [
calc_adjusted_performance(f, n + r, l)
for f, n, r, l in zip(recall, newline_score, repetition_score, answer_len)
]
return precision, recall
def plot_performance_scores(
result,
models=None,
title="Performance",
):
if models is None:
models = result.keys()
for model in models:
print(f"model: {model}")
df = result[model]["df_overall"]
# Calculate the statistics
precision = [
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
]
recall = [
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
]
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
best_f1 = max(f1)
best_f1_index = f1.index(best_f1)
precision, recall = adjust_perf_scores_with_repetition_penalty(
result[model], precision, recall
)
afrp = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
best_afrp = max(afrp)
best_afrp_index = afrp.index(best_afrp)
adjusted_precision = [
df["adjusted_precision"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
adjusted_recall = [
df["adjusted_recall"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
afrp2 = [
2 * (p * r) / (p + r) for p, r in zip(adjusted_precision, adjusted_recall)
]
best_afrp2 = max(afrp2)
best_afrp2_index = afrp2.index(best_afrp2)
repetition_penalties = list(df["repetition_penalty"])
# line plot for precision, recall, f1
plt.figure(figsize=(10, 6))
plt.axvspan(
repetition_penalties[best_f1_index] - 0.01,
repetition_penalties[best_f1_index] + 0.01,
alpha=0.5,
edgecolor="none",
facecolor="blue",
)
# plt.axvspan(
# repetition_penalties[best_afrp2_index] - 0.01,
# repetition_penalties[best_afrp2_index] + 0.01,
# alpha=0.5,
# edgecolor="none",
# facecolor="green",
# )
plt.axvspan(
repetition_penalties[best_afrp_index] - 0.01,
repetition_penalties[best_afrp_index] + 0.01,
alpha=0.5,
edgecolor="none",
facecolor="orange",
)
plt.plot(repetition_penalties, f1, label="F1", marker="D", color="blue")
# plt.plot(
# repetition_penalties,
# afrp2,
# label="Per-question RAP - F1",
# marker="s",
# color="green",
# )
plt.plot(
repetition_penalties,
afrp,
label="RAP - F1",
marker="o",
color="orange",
)
plt.xlabel("Repetition Penalties")
plt.ylabel("Score")
# plt.xlim(0.99, 1.31)
# y in percentage
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
plt.title(f"{model} {title}")
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
plt.show()
def plot_best_afrp(
result,
models=None,
title="Models with Best RAP - F1",
ref_result=None,
):
# Initialize lists to store the statistics
model_names = []
best_f1 = []
best_afrp = []
best_repetition_penalty = []
best_mtr = []
if models is None:
models = result.keys()
for model in models:
print(f"model: {model}")
df = result[model]["df_overall"]
# Calculate the statistics
precision = [
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
]
recall = [
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
]
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
newline_score = [
df["newline_score"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
# print(f"newline_score: {newline_score}")
repetition_score = [
df["repetition_score"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
# print(f"repetition_score: {repetition_score}")
answer_len = [
df["answer_len"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
afrp = [
calc_adjusted_performance(f, n + r, l)
for f, n, r, l in zip(f1, newline_score, repetition_score, answer_len)
]
best_afrp.append(max(afrp))
best_afrp_index = afrp.index(best_afrp[-1])
best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index])
best_f1.append(f1[best_afrp_index])
best_mtr.append(
newline_score[best_afrp_index] + repetition_score[best_afrp_index]
)
# print(
# f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}"
# )
df = result[model]["df_list_repetition_penalty"][best_afrp_index]
model_names.append(
f"{model} (RP={best_repetition_penalty[-1]})"
) # Add the model name to the list
if ref_result is not None:
print("ref_result:", ref_result)
for model in ref_result.keys():
model_names.append(model)
df = pd.read_csv(ref_result[model])
# df = df[df["id"].isin(wikidata_df["id"])]
p = df["precision"].mean()
r = df["recall"].mean()
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
best_f1.append(f1)
best_afrp.append(f1)
best_mtr.append(0)
print("model_names:", model_names)
# print("best_f1:", best_f1)
# print("best_afrp:", best_afrp)
# Create a DataFrame with the statistics
data = pd.DataFrame(
{
"Model": model_names,
"RAP - F1": best_afrp,
"F1": best_f1,
}
)
# Melt the DataFrame to a long format
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
# Pivot the DataFrame to a wide format
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
# make sure the columns are following the order of the models
data_pivoted = data_pivoted[model_names]
# make sure three groups in the order of precision, recall, f1
data_pivoted = data_pivoted.reindex(["RAP - F1", "F1"])
# Plot the statistics
plt.figure(figsize=(15, 6))
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
plt.title(title)
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
# Set the rotation of the x-axis labels to 0 degrees
plt.xticks(rotation=0)
# Format the y-axis to display as percentage
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
# get the max value of the y-axis
a1 = max(best_afrp)
a2 = max(best_f1)
max_value = max([a1, a2]) * 1.12
print("max_value:", max_value)
# Set the y-axis limit up to 70%
ax.set_ylim(0, max_value)
# Add the values above each bar
for p in ax.patches:
ax.annotate(
f"{p.get_height() * 100:.1f}",
(p.get_x() + p.get_width() / 2.0, p.get_height()),
ha="center",
va="bottom",
xytext=(0, 10),
textcoords="offset points",
rotation=90,
)
plt.show()
return data_pivoted, best_mtr
def plot_best_performance(
result,
models=None,
title="Models with Best F1 Score",
adjusted_f1=False,
ref_result=None,
):
# Initialize lists to store the statistics
model_names = []
best_precision = []
best_recall = []
best_f1 = []
best_repetition_penalty = []
best_mtr = []
if models is None:
models = result.keys()
for model in models:
print(f"model: {model}")
df = result[model]["df_overall"]
# Calculate the statistics
precision = [
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
]
recall = [
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
]
newline_score = [
df["newline_score"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
repetition_score = [
df["repetition_score"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
if adjusted_f1:
precision, recall = adjust_perf_scores_with_repetition_penalty(
result[model], precision, recall
)
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
best_f1.append(max(f1))
best_f1_index = f1.index(best_f1[-1])
best_repetition_penalty.append(df["repetition_penalty"][best_f1_index])
best_precision.append(precision[best_f1_index])
best_recall.append(recall[best_f1_index])
best_mtr.append(newline_score[best_f1_index] + repetition_score[best_f1_index])
print(
f"best repetition penalty: {best_repetition_penalty[-1]}, best f1: {best_f1[-1]}, precision: {best_precision[-1]}, recall: {best_recall[-1]}"
)
df = result[model]["df_list_repetition_penalty"][best_f1_index]
model_names.append(
f"{model} (RP={best_repetition_penalty[-1]})"
) # Add the model name to the list
# print sum for columns: newline_score, repetition_score
print(
f"newline_score: {df['newline_score'].sum()}, repetition_score: {df['repetition_score'].sum()}"
)
if ref_result is not None:
print("ref_result:", ref_result)
for model in ref_result.keys():
model_names.append(model)
df = pd.read_csv(ref_result[model])
# df = df[df["id"].isin(wikidata_df["id"])]
best_precision.append(df["precision"].mean())
best_recall.append(df["recall"].mean())
f1 = (
2
* (best_precision[-1] * best_recall[-1])
/ (best_precision[-1] + best_recall[-1])
)
# best_f1.append(df["f1"].mean())
best_f1.append(f1)
best_mtr.append(0)
# Create a DataFrame with the statistics
data = (
pd.DataFrame(
{
"Model": model_names,
"Adjusted Precision with RP": best_precision,
"Adjusted Recall with RP": best_recall,
"Adjusted F1 with RP": best_f1,
}
)
if adjusted_f1
else pd.DataFrame(
{
"Model": model_names,
"Precision": best_precision,
"Recall": best_recall,
"F1": best_f1,
}
)
)
columns = list(data.columns)
# Melt the DataFrame to a long format
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
# Pivot the DataFrame to a wide format
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
# make sure the columns are following the order of the models
data_pivoted = data_pivoted[model_names]
# make sure three groups in the order of precision, recall, f1
data_pivoted = data_pivoted.reindex(columns[1:])
# Plot the statistics
plt.figure(figsize=(10, 6))
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
plt.title(title)
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
# Set the rotation of the x-axis labels to 0 degrees
plt.xticks(rotation=0)
# Format the y-axis to display as percentage
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
# get the max value of the y-axis
a1 = max(best_precision)
a2 = max(best_recall)
a3 = max(best_f1)
max_value = max([a1, a2, a3]) * 1.12
print("max_value:", max_value)
# Set the y-axis limit up to 70%
ax.set_ylim(0, max_value)
# Add the values above each bar
for p in ax.patches:
ax.annotate(
f"{p.get_height() * 100:.1f}",
(p.get_x() + p.get_width() / 2.0, p.get_height()),
ha="center",
va="bottom",
xytext=(0, 10),
textcoords="offset points",
rotation=90,
)
plt.show()
return data_pivoted, best_mtr
def plot_best_performance_ms_macro(
result,
models=None,
title="Models with Best RAP - Performance",
ref_result=None,
skip_generic_prompt=False,
include_adjusted_performance=True,
):
# Initialize lists to store the statistics
model_names = []
best_f1 = []
best_afrp = []
best_repetition_penalty = []
best_bleu1 = []
best_rougeL = []
best_mtr = []
if models is None:
models = result.keys()
for model in models:
if skip_generic_prompt and "generic prompt" in model:
continue
print(f"model: {model}")
df = result[model]["df_overall"]
# Calculate the statistics
bleu1 = [x for x in df["bleu1"]]
rougeL = [x for x in df["rougeL"]]
f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
newline_score = [
df["newline_score"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
# print(f"newline_score: {newline_score}")
repetition_score = [
df["repetition_score"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
# print(f"repetition_score: {repetition_score}")
answer_len = [
df["answer_len"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
afrp = [
calc_adjusted_performance(f, n + r, l)
for f, n, r, l in zip(f1, newline_score, repetition_score, answer_len)
]
best_afrp.append(max(afrp if include_adjusted_performance else f1))
best_afrp_index = (
afrp.index(best_afrp[-1])
if include_adjusted_performance
else f1.index(best_afrp[-1])
)
best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index])
best_f1.append(f1[best_afrp_index])
best_bleu1.append(bleu1[best_afrp_index])
best_rougeL.append(rougeL[best_afrp_index])
best_mtr.append(
newline_score[best_afrp_index] + repetition_score[best_afrp_index]
)
# print(
# f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}"
# )
df = result[model]["df_list_repetition_penalty"][best_afrp_index]
model_names.append(
f"{model} (RP={best_repetition_penalty[-1]})"
) # Add the model name to the list
if ref_result is not None:
print("ref_result:", ref_result)
for model in ref_result.keys():
model_names.append(model)
df = pd.read_csv(ref_result[model], comment="#", on_bad_lines="warn")
# df = df[df["id"].isin(wikidata_df["id"])]
p = df["bleu1"][0]
best_bleu1.append(p)
r = df["rougeL"][0]
best_rougeL.append(r)
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
best_f1.append(f1)
best_afrp.append(f1)
best_mtr.append(0)
# print("model_names:", model_names)
# print("best_f1:", best_f1)
# print("best_afrp:", best_afrp)
# Create a DataFrame with the statistics
data = (
pd.DataFrame(
{
"Model": model_names,
"RAP - Perf Score": best_afrp,
"Overall Perf Score": best_f1,
}
)
if include_adjusted_performance
else pd.DataFrame(
{
"Model": model_names,
"Bleu-1": best_bleu1,
"Rouge-L": best_rougeL,
"Overall Perf Score": best_f1,
}
)
)
# Melt the DataFrame to a long format
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
# Pivot the DataFrame to a wide format
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
# make sure the columns are following the order of the models
data_pivoted = data_pivoted[model_names]
columns = list(data.columns)
data_pivoted = data_pivoted.reindex(columns[1:])
# Plot the statistics
plt.figure(figsize=(10, 6))
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
plt.title(title)
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
# Set the rotation of the x-axis labels to 0 degrees
plt.xticks(rotation=0)
# Format the y-axis to display as percentage
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
# get the max value of the y-axis
a1 = max(best_afrp)
a2 = max(best_f1)
a3 = max(best_bleu1)
a4 = max(best_rougeL)
max_value = (
max([a1, a2] if include_adjusted_performance else [a1, a2, a3, a4]) * 1.12
)
print("max_value:", max_value)
# Set the y-axis limit up to 70%
ax.set_ylim(0, max_value)
# Add the values above each bar
for p in ax.patches:
ax.annotate(
f"{p.get_height() * 100:.1f}",
(p.get_x() + p.get_width() / 2.0, p.get_height()),
ha="center",
va="bottom",
xytext=(0, 10),
textcoords="offset points",
rotation=90,
)
plt.show()
return data_pivoted, best_mtr
all_open_source_models = [
"gemma-1.1-2b-it",
"Phi-3-mini-128k-instruct",
"gemma-1.1-7b-it",
"Llama-2-7b-chat-hf",
"Mistral-7B-Instruct-v0.2",
"Meta-Llama-3-8B-Instruct",
"Llama-2-13b-chat-hf",
"Llama-2-70b-chat-hf",
"Meta-Llama-3-70B-Instruct",
]
def load_for_repetition_penalty_ms_macro(
csv_result_file, repetition_penalty, force_recalculate=False
):
result_file = replace_last(
csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv"
)
df = load_with_newline_and_repetition_scores(
result_file, force_recalculate=force_recalculate
)
return df
# MS MACRO
def plot_performance_scores_ms_macro(
result,
models=None,
title="Performance",
):
if models is None:
models = result.keys()
for model in models:
print(f"model: {model}")
df = result[model]["df_overall"]
# print(result[model]["df_list_repetition_penalty"][0].describe())
# Calculate the statistics
bleu1 = list(df["bleu1"])
rougeL = list(df["rougeL"])
f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
best_f1 = max(f1)
best_f1_index = f1.index(best_f1)
bleu1, rougeL = adjust_perf_scores_with_repetition_penalty(
result[model], bleu1, rougeL
)
afrp = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
best_afrp = max(afrp)
best_afrp_index = afrp.index(best_afrp)
repetition_penalties = list(df["repetition_penalty"])
# line plot for precision, recall, f1
plt.figure(figsize=(10, 6))
plt.axvspan(
repetition_penalties[best_f1_index] - 0.01,
repetition_penalties[best_f1_index] + 0.01,
alpha=0.5,
edgecolor="none",
facecolor="blue",
)
plt.axvspan(
repetition_penalties[best_afrp_index] - 0.01,
repetition_penalties[best_afrp_index] + 0.01,
alpha=0.5,
edgecolor="none",
facecolor="orange",
)
plt.plot(
repetition_penalties,
f1,
label="Overall Perf Score",
marker="D",
color="blue",
)
plt.plot(
repetition_penalties,
afrp,
label="RAP - Perf Score",
marker="o",
color="orange",
)
plt.xlabel("Repetition Penalties")
plt.ylabel("Score")
# plt.xlim(0.99, 1.31)
# y in percentage
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
plt.title(f"{model} {title}")
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
plt.show()
def plot_repetition_factors(result, groups):
for group in groups:
# Plot the statistics
plt.figure(figsize=(10, 6))
max_value = 0
for model in result.keys():
if not group in model.lower():
continue
print(f"model: {model}")
df = result[model]["df_overall"]
repetition_panelties = [
repetition_penalty for repetition_penalty in df["repetition_penalty"]
]
mean_score = [
df["total_repetitions"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
sns.lineplot(x=repetition_panelties, y=mean_score, label=model)
new_max = max(mean_score)
if new_max > max_value:
max_value = new_max
max_value = max_value * 1.05
# if max_value < 1.5:
# max_value = 1.5
# set ylimit
plt.ylim(0, max_value)
# show grid
plt.grid(True)
plt.xlabel("Repetition Penalties")
plt.ylabel("Mean Total Repetitions")
plt.title("Mean Total Repetitions vs Repetition Penalties")
plt.legend()
plt.show()
def plot_repetition_factors_by_group(result, group_filter=None):
markers = ["D", "o", "s", "x"]
colors = ["blue", "orange", "green", "red"]
# Plot the statistics
plt.figure(figsize=(10, 6))
index = 0
max_value = 0
for model in result.keys():
if group_filter is not None and group_filter not in model:
continue
print(f"model: {model}")
df = result[model]["df_overall"]
repetition_panelties = [
repetition_penalty for repetition_penalty in df["repetition_penalty"]
]
# Calculate the statistics
mean_score = [
df["total_repetitions"].mean()
for df in result[model]["df_list_repetition_penalty"]
]
if len(mean_score) != len(repetition_panelties):
print(
f"model: {model} has different length of repetition penalties and mean score"
)
print("repetition_panelties:", len(repetition_panelties))
print("mean_score:", len(mean_score))
continue
new_max = max(mean_score)
if new_max > max_value:
max_value = new_max
sns.lineplot(
x=repetition_panelties,
y=mean_score,
label=model,
marker=markers[index],
color=colors[index],
)
index += 1
max_value = max_value * 1.05
# if max_value < 1.5:
# max_value = 1.5
# set ylimit
plt.ylim(0, max_value)
max_value = 0
plt.xlabel("Repetition Penalties")
plt.ylabel("Mean Total Repetitions")
plt.title("Mean Total Repetitions vs Repetition Penalties")
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
plt.show()
ms_marco_csv_result_files = [
"data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_mm.csv",
"data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_mm.csv",
"data/results_v2/gemma-1.1-2b-it(Non-RAG)_mm.csv",
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_mm.csv",
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_mm.csv",
"data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_mm.csv",
"data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_mm.csv",
"data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_mm.csv",
"data/results_v2/gemma-1.1-7b-it(Non-RAG)_mm.csv",
"data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_mm.csv",
"data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_mm.csv",
"data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_mm.csv",
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_mm.csv",
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_mm.csv",
"data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_mm.csv",
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_mm.csv",
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_mm.csv",
"data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_mm.csv",
"data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_mm.csv",
"data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_mm.csv",
"data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_mm.csv",
"data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_mm.csv",
"data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_mm.csv",
"data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_mm.csv",
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_mm.csv",
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_mm.csv",
"data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_mm.csv",
]
webqsp_csv_result_files = [
"data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_wd.csv",
"data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_wd.csv",
"data/results_v2/gemma-1.1-2b-it(Non-RAG)_wd.csv",
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_wd.csv",
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_wd.csv",
"data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_wd.csv",
"data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_wd.csv",
"data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_wd.csv",
"data/results_v2/gemma-1.1-7b-it(Non-RAG)_wd.csv",
"data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_wd.csv",
"data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_wd.csv",
"data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_wd.csv",
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_wd.csv",
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_wd.csv",
"data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_wd.csv",
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_wd.csv",
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_wd.csv",
"data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_wd.csv",
"data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_wd.csv",
"data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_wd.csv",
"data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_wd.csv",
"data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_wd.csv",
"data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_wd.csv",
"data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_wd.csv",
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_wd.csv",
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_wd.csv",
"data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_wd.csv",
]
def calc_rap_scores(result, precision="precision", recall="recall"):
newline_score = [
df["newline_score"].mean() for df in result["df_list_repetition_penalty"]
]
repetition_score = [
df["repetition_score"].mean() for df in result["df_list_repetition_penalty"]
]
if precision in result["df_list_repetition_penalty"][0].columns:
precision = [
df[precision].mean() for df in result["df_list_repetition_penalty"]
]
recall = [df[recall].mean() for df in result["df_list_repetition_penalty"]]
else:
precision = result["df_overall"][precision]
recall = result["df_overall"][recall]
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
nrr = [
1 - (n + r) / s
for f, n, r, s in zip(
f1, newline_score, repetition_score, result["df_overall"]["answer_len"]
)
]
rap = [calc_adjusted_performance(f, 1 - n) for f, n in zip(f1, nrr)]
return newline_score, repetition_score, f1, rap, nrr
def get_model_name(csv_result_file):
parts = re.split(r"[_/]", csv_result_file)
print(f"parts: {parts}")
model_name = parts[3]
return model_name
def load_webqsp_result(csv_result_files, force_recalculate=False, save=False):
result = {}
for i, csv_result_file in enumerate(csv_result_files):
try:
df = pd.read_csv(csv_result_file)
model_name = get_model_name(csv_result_file)
print(f"\tmodel_name: {model_name}")
dfs = [
calculate_performance_score(
csv_result_file,
repetition_penalty,
force_recalculate=force_recalculate,
)
for repetition_penalty in df["repetition_penalty"]
]
answer_lens = []
for df_rpp in dfs:
answer_lens.append(df_rpp["answer_len"].mean())
df["answer_len"] = answer_lens
result[model_name] = {
"df_overall": df,
"df_list_repetition_penalty": dfs,
"file": csv_result_file,
}
newline_score, repetition_score, perf, rap, nrr = calc_rap_scores(
result[model_name]
)
df["newline_score"] = newline_score
df["repetition_score"] = repetition_score
df["total_repetitions"] = df["newline_score"] + df["repetition_score"]
df["perf"] = perf
df["nrr"] = nrr
df["rap"] = rap
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
if save:
df.to_csv(csv_result_file, index=False)
except Exception as e:
print(f"Error: {e}")
traceback.print_exc()
return result
def load_ms_marco_result(
csv_result_files, force_recalculate=False, calc_bertscore=False, save=False
):
result = {}
for csv_result_file in csv_result_files:
try:
df = pd.read_csv(csv_result_file)
model_name = get_model_name(csv_result_file)
print(f"\tmodel_name: {model_name}")
dfs = [
load_for_repetition_penalty_ms_macro(
csv_result_file,
repetition_penalty,
force_recalculate=force_recalculate,
)
for repetition_penalty in df["repetition_penalty"]
]
answer_lens = []
for df_rpp in dfs:
answer_lens.append(df_rpp["answer_len"].mean())
df["answer_len"] = answer_lens
col = "bert_score" if calc_bertscore else "meteor"
score_unavailable = col not in df.columns
if score_unavailable:
save = True
bert_meteor_scores = []
bert_score_references = None
for df_rpp in dfs:
if calc_bertscore:
bert_meteor_score = 0
for i, row in df_rpp.iterrows():
answer = row["answer"]
if not isinstance(answer, str):
answer = ""
bert_meteor_score += bert_score.compute(
predictions=[answer],
references=[row["ground_truth"][0]],
lang="en",
model_type="microsoft/deberta-large-mnli",
)["f1"][0]
# get average of bertscore
bert_meteor_score = bert_meteor_score / len(df_rpp)
print(f"bert_score: {bert_meteor_score}")
else:
bert_meteor_score = meteor.compute(
predictions=df_rpp["answer"],
references=df_rpp["ground_truth"],
)["meteor"]
bert_meteor_scores.append(bert_meteor_score)
df[col] = bert_meteor_scores
result[model_name] = {
"df_overall": df,
"df_list_repetition_penalty": dfs,
"file": csv_result_file,
}
newline_score, repetition_score, perf, rap, nrr = calc_rap_scores(
result[model_name],
precision=col,
recall=col,
)
df["newline_score"] = newline_score
df["repetition_score"] = repetition_score
df["total_repetitions"] = df["newline_score"] + df["repetition_score"]
df["perf"] = perf
df["nrr"] = nrr
df["rap"] = rap
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
if save:
df.to_csv(csv_result_file, index=False)
except Exception as e:
print("An error occurred:", e)
traceback.print_exc()
print(f"csv_result_file: {csv_result_file}")
return result