Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import torch | |
import torchaudio | |
import torchaudio.functional as F | |
import torchaudio.transforms as T | |
import re | |
def replace_low_freq_with_energy_matched( | |
a_file: str, | |
b_file: str, | |
c_file: str, | |
cutoff_freq: float = 5500.0, | |
eps: float = 1e-10 | |
): | |
""" | |
1. Load a_file (16kHz) and b_file (48kHz). | |
2. Resample 'a' to 48kHz if needed. | |
3. Match the low-frequency energy of 'a' to that of 'b'. | |
4. Replace the low-frequency of 'b' with the matched low-frequency of 'a'. | |
5. Save the result to c_file. | |
Args: | |
a_file (str): Path to a.mp3 (16kHz). | |
b_file (str): Path to b.mp3 (48kHz). | |
c_file (str): Output path for combined result. | |
cutoff_freq (float): Cutoff frequency for low/highpass filters. | |
eps (float): Small value to avoid division-by-zero. | |
""" | |
# ---------------------------------------------------------- | |
# 1. Load the two files | |
# ---------------------------------------------------------- | |
wave_a, sr_a = torchaudio.load(a_file) | |
wave_b, sr_b = torchaudio.load(b_file) | |
# If 'a' doesn't match 'b' sample rate, resample it | |
if sr_a != sr_b: | |
resampler = T.Resample(orig_freq=sr_a, new_freq=sr_b) | |
wave_a = resampler(wave_a) | |
sr_a = sr_b # Now they match | |
# ---------------------------------------------------------- | |
# 2. Low-pass both signals to isolate low-frequency content | |
# ---------------------------------------------------------- | |
wave_a_low = F.lowpass_biquad( | |
wave_a, | |
sample_rate=sr_b, | |
cutoff_freq=cutoff_freq | |
) | |
wave_b_low = F.lowpass_biquad( | |
wave_b, | |
sample_rate=sr_b, | |
cutoff_freq=cutoff_freq | |
) | |
# ---------------------------------------------------------- | |
# 3. Compute RMS of low-frequency portions | |
# ---------------------------------------------------------- | |
# We'll do a simple global RMS (across channels & time) | |
# If you need per-channel matching, handle each channel separately. | |
a_rms = wave_a_low.pow(2).mean().sqrt().item() + eps | |
b_rms = wave_b_low.pow(2).mean().sqrt().item() + eps | |
# ---------------------------------------------------------- | |
# 4. Scale 'a_low' so its energy matches 'b_low' | |
# ---------------------------------------------------------- | |
scale_factor = b_rms / a_rms | |
wave_a_low_matched = wave_a_low * scale_factor | |
# ---------------------------------------------------------- | |
# 5. High-pass 'b' to isolate high-frequency content | |
# ---------------------------------------------------------- | |
wave_b_high = F.highpass_biquad( | |
wave_b, | |
sample_rate=sr_b, | |
cutoff_freq=cutoff_freq | |
) | |
# ---------------------------------------------------------- | |
# 6. Combine: (scaled a_low) + (b_high) | |
# ---------------------------------------------------------- | |
if wave_a_low_matched.size(1)!=wave_b_high.size(1): | |
print(f"Original lengths: a_low={wave_a_low_matched.size()}, b_high={wave_b_high.size()}") | |
min_length = min(wave_a_low_matched.size(1), wave_b_high.size(1)) | |
wave_a_low_matched = wave_a_low_matched[:, :min_length] | |
wave_b_high = wave_b_high[:, :min_length] | |
print(f"After truncation: a_low={wave_a_low_matched.size()}, b_high={wave_b_high.size()}") | |
print(f"Samples truncated: {max(wave_a_low_matched.size(1), wave_b_high.size(1)) - min_length}") | |
wave_combined = wave_a_low_matched + wave_b_high | |
# (Optional) Normalize if needed to avoid clipping | |
# wave_combined /= max(wave_combined.abs().max(), 1.0) | |
# ---------------------------------------------------------- | |
# 7. Save to c.mp3 | |
# ---------------------------------------------------------- | |
torchaudio.save(c_file, wave_combined, sample_rate=sr_b) | |
print(f"Successfully created '{os.path.basename(c_file)}' with matched low-frequency energy.") | |
if __name__ == "__main__": | |
stage2_output_dir = sys.argv[1] | |
recons_dir = os.path.join(stage2_output_dir, "recons", "mix") | |
vocoder_dir = os.path.join(stage2_output_dir, "vocoder", "mix") | |
save_dir = os.path.join(stage2_output_dir, "post_process") | |
os.makedirs(save_dir, exist_ok=True) | |
# Create dictionaries mapping IDs to filenames | |
recons_files = {} | |
vocoder_files = {} | |
pattern = r"mixed_([a-f0-9-]+)_xcodec_16k\.mp3$" | |
# Map IDs to filenames for recons/mix | |
for filename in os.listdir(recons_dir): | |
match = re.search(pattern, filename) | |
if match: | |
recons_files[(match.group(1)).lower()] = filename | |
print(recons_files) | |
pattern = r"__([a-f0-9-]+)\.mp3$" | |
# Map IDs to filenames for vocoder/mix | |
for filename in os.listdir(vocoder_dir): | |
match = re.search(pattern, filename) | |
if match: | |
vocoder_files[(match.group(1)).lower()] = filename | |
# Find common IDs | |
common_ids = set(recons_files.keys()) & set(vocoder_files.keys()) | |
print(f"Found {len(common_ids)} matching file pairs") | |
# Create matched file lists | |
a_list = [] | |
b_list = [] | |
for id in common_ids: | |
a_list.append(os.path.join(recons_dir, recons_files[id])) | |
b_list.append(os.path.join(vocoder_dir, vocoder_files[id])) | |
# Process only matching pairs | |
for a, b in zip(a_list, b_list): | |
if os.path.exists(os.path.join(save_dir, os.path.basename(b))): | |
continue | |
replace_low_freq_with_energy_matched( | |
a_file=a, # 16kHz | |
b_file=b, # 48kHz | |
c_file=os.path.join(save_dir, os.path.basename(b)), | |
cutoff_freq=5500.0 | |
) |