Spaces:
Runtime error
Runtime error
File size: 57,628 Bytes
ab2e354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 |
import os, sys
import datetime, subprocess
from mega import Mega
now_dir = os.getcwd()
sys.path.append(now_dir)
import logging
import shutil
import threading
import traceback
import warnings
from random import shuffle
from subprocess import Popen
from time import sleep
import json
import pathlib
import fairseq
import faiss
import gradio as gr
import numpy as np
import torch
from dotenv import load_dotenv
from sklearn.cluster import MiniBatchKMeans
from configs.config import Config
from i18n.i18n import I18nAuto
from infer.lib.train.process_ckpt import (
change_info,
extract_small_model,
merge,
show_info,
)
from infer.modules.uvr5.modules import uvr
from infer.modules.vc.modules import VC
logging.getLogger("numba").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
load_dotenv()
config = Config()
vc = VC(config)
if config.dml == True:
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
i18n = I18nAuto()
logger.info(i18n)
# 判断是否有能用来训练和加速推理的N卡
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False
if torch.cuda.is_available() or ngpu != 0:
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if any(
value in gpu_name.upper()
for value in [
"10",
"16",
"20",
"30",
"40",
"A2",
"A3",
"A4",
"P4",
"A50",
"500",
"A60",
"70",
"80",
"90",
"M4",
"T4",
"TITAN",
]
):
# A10#A100#V100#A40#P40#M40#K80#A4500
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(
int(
torch.cuda.get_device_properties(i).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
)
if if_gpu_ok and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool", **kwargs)
def get_block_name(self):
return "button"
weight_root = os.getenv("weight_root")
weight_uvr5_root = os.getenv("weight_uvr5_root")
index_root = os.getenv("index_root")
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth") or "onnx" in name:
uvr5_names.append(name.replace(".pth", ""))
def change_choices():
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
audio_files=[]
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg')):
audio_files.append('./audios/'+filename)
return {"choices": sorted(names), "__type__": "update"}, {
"choices": sorted(index_paths),
"__type__": "update",
}, {"choices": sorted(audio_files), "__type__": "update"}
def clean():
return {"value": "", "__type__": "update"}
def export_onnx():
from infer.modules.onnx.export import export_onnx as eo
eo()
sr_dict = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
def if_done(done, p):
while 1:
if p.poll() is None:
sleep(0.5)
else:
break
done[0] = True
def if_done_multi(done, ps):
while 1:
# poll==None代表进程未结束
# 只要有一个进程未结束都不停
flag = 1
for p in ps:
if p.poll() is None:
flag = 0
sleep(0.5)
break
if flag == 1:
break
done[0] = True
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
sr = sr_dict[sr]
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
f.close()
per = 3.0 if config.is_half else 3.7
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
config.python_cmd,
trainset_dir,
sr,
n_p,
now_dir,
exp_dir,
config.noparallel,
per,
)
logger.info(cmd)
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
while 1:
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0]:
break
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
yield log
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
gpus = gpus.split("-")
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
f.close()
if if_f0:
if f0method != "rmvpe_gpu":
cmd = (
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
% (
config.python_cmd,
now_dir,
exp_dir,
n_p,
f0method,
)
)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
else:
if gpus_rmvpe != "-":
gpus_rmvpe = gpus_rmvpe.split("-")
leng = len(gpus_rmvpe)
ps = []
for idx, n_g in enumerate(gpus_rmvpe):
cmd = (
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
% (
config.python_cmd,
leng,
idx,
n_g,
now_dir,
exp_dir,
config.is_half,
)
)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi, #
args=(
done,
ps,
),
).start()
else:
cmd = (
config.python_cmd
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
% (
now_dir,
exp_dir,
)
)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
p.wait()
done = [True]
while 1:
with open(
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
) as f:
yield (f.read())
sleep(1)
if done[0]:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
yield log
####对不同part分别开多进程
"""
n_part=int(sys.argv[1])
i_part=int(sys.argv[2])
i_gpu=sys.argv[3]
exp_dir=sys.argv[4]
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
"""
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = (
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
% (
config.python_cmd,
config.device,
leng,
idx,
n_g,
now_dir,
exp_dir,
version19,
)
)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi,
args=(
done,
ps,
),
).start()
while 1:
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0]:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
yield log
def get_pretrained_models(path_str, f0_str, sr2):
if_pretrained_generator_exist = os.access(
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
if_pretrained_discriminator_exist = os.access(
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
if not if_pretrained_generator_exist:
logger.warn(
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
path_str,
f0_str,
sr2,
)
if not if_pretrained_discriminator_exist:
logger.warn(
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
path_str,
f0_str,
sr2,
)
return (
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
if if_pretrained_generator_exist
else "",
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
if if_pretrained_discriminator_exist
else "",
)
def change_sr2(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
f0_str = "f0" if if_f0_3 else ""
return get_pretrained_models(path_str, f0_str, sr2)
def change_version19(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
if sr2 == "32k" and version19 == "v1":
sr2 = "40k"
to_return_sr2 = (
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
if version19 == "v1"
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
)
f0_str = "f0" if if_f0_3 else ""
return (
*get_pretrained_models(path_str, f0_str, sr2),
to_return_sr2,
)
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
path_str = "" if version19 == "v1" else "_v2"
return (
{"visible": if_f0_3, "__type__": "update"},
*get_pretrained_models(path_str, "f0", sr2),
)
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
def click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
):
# 生成filelist
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
if if_f0_3:
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(feature_dir)]
)
opt = []
for name in names:
if if_f0_3:
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
fea_dim = 256 if version19 == "v1" else 768
if if_f0_3:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
)
else:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
)
shuffle(opt)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
logger.debug("Write filelist done")
# 生成config#无需生成config
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
logger.info("Use gpus: %s", str(gpus16))
if pretrained_G14 == "":
logger.info("No pretrained Generator")
if pretrained_D15 == "":
logger.info("No pretrained Discriminator")
if version19 == "v1" or sr2 == "40k":
config_path = "v1/%s.json" % sr2
else:
config_path = "v2/%s.json" % sr2
config_save_path = os.path.join(exp_dir, "config.json")
if not pathlib.Path(config_save_path).exists():
with open(config_save_path, "w", encoding="utf-8") as f:
json.dump(
config.json_config[config_path],
f,
ensure_ascii=False,
indent=4,
sort_keys=True,
)
f.write("\n")
if gpus16:
cmd = (
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
% (
config.python_cmd,
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
1 if if_save_latest13 == i18n("是") else 0,
1 if if_cache_gpu17 == i18n("是") else 0,
1 if if_save_every_weights18 == i18n("是") else 0,
version19,
)
)
else:
cmd = (
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
% (
config.python_cmd,
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
total_epoch11,
save_epoch10,
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
1 if if_save_latest13 == i18n("是") else 0,
1 if if_cache_gpu17 == i18n("是") else 0,
1 if if_save_every_weights18 == i18n("是") else 0,
version19,
)
)
logger.info(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1, version19):
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
exp_dir = "logs/%s" % (exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
if not os.path.exists(feature_dir):
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
infos = []
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
yield "\n".join(infos)
try:
big_npy = (
MiniBatchKMeans(
n_clusters=10000,
verbose=True,
batch_size=256 * config.n_cpu,
compute_labels=False,
init="random",
)
.fit(big_npy)
.cluster_centers_
)
except:
info = traceback.format_exc()
logger.info(info)
infos.append(info)
yield "\n".join(infos)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
infos.append("training")
yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
infos.append("adding")
yield "\n".join(infos)
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
infos.append(
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
)
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
yield "\n".join(infos)
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key(
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
):
infos = []
def get_info_str(strr):
infos.append(strr)
return "\n".join(infos)
####### step1:处理数据
yield get_info_str(i18n("step1:正在处理数据"))
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
####### step2a:提取音高
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
[
get_info_str(_)
for _ in extract_f0_feature(
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
)
]
####### step3a:训练模型
yield get_info_str(i18n("step3a:正在训练模型"))
click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
)
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
####### step3b:训练索引
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
yield get_info_str(i18n("全流程结束!"))
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
try:
with open(
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
) as f:
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
sr, f0 = info["sample_rate"], info["if_f0"]
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
return sr, str(f0), version
except:
traceback.print_exc()
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
F0GPUVisible = config.dml == False
def change_f0_method(f0method8):
if f0method8 == "rmvpe_gpu":
visible = F0GPUVisible
else:
visible = False
return {"visible": visible, "__type__": "update"}
def find_model():
if len(names) > 0:
vc.get_vc(sorted(names)[0],None,None)
return sorted(names)[0]
else:
try:
gr.Info("Do not forget to choose a model.")
except:
pass
return ''
def find_audios(index=False):
audio_files=[]
if not os.path.exists('./audios'): os.mkdir("./audios")
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg')):
audio_files.append("./audios/"+filename)
if index:
if len(audio_files) > 0: return sorted(audio_files)[0]
else: return ""
elif len(audio_files) > 0: return sorted(audio_files)
else: return []
def get_index():
if find_model() != '':
chosen_model=sorted(names)[0].split(".")[0]
logs_path="./logs/"+chosen_model
if os.path.exists(logs_path):
for file in os.listdir(logs_path):
if file.endswith(".index"):
return os.path.join(logs_path, file)
return ''
else:
return ''
def get_indexes():
indexes_list=[]
for dirpath, dirnames, filenames in os.walk("./logs/"):
for filename in filenames:
if filename.endswith(".index"):
indexes_list.append(os.path.join(dirpath,filename))
if len(indexes_list) > 0:
return indexes_list
else:
return ''
def save_wav(file):
try:
file_path=file.name
shutil.move(file_path,'./audios')
return './audios/'+os.path.basename(file_path)
except AttributeError:
try:
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
new_path='./audios/'+new_name
shutil.move(file,new_path)
return new_path
except TypeError:
return None
def download_from_url(url, model):
if url == '':
return "URL cannot be left empty."
if model =='':
return "You need to name your model. For example: My-Model"
url = url.strip()
zip_dirs = ["zips", "unzips"]
for directory in zip_dirs:
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs("zips", exist_ok=True)
os.makedirs("unzips", exist_ok=True)
zipfile = model + '.zip'
zipfile_path = './zips/' + zipfile
try:
if "drive.google.com" in url:
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
elif "mega.nz" in url:
m = Mega()
m.download_url(url, './zips')
else:
subprocess.run(["wget", url, "-O", zipfile_path])
for filename in os.listdir("./zips"):
if filename.endswith(".zip"):
zipfile_path = os.path.join("./zips/",filename)
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
else:
return "No zipfile found."
for root, dirs, files in os.walk('./unzips'):
for file in files:
file_path = os.path.join(root, file)
if file.endswith(".index"):
os.mkdir(f'./logs/{model}')
shutil.copy2(file_path,f'./logs/{model}')
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
shutil.copy(file_path,f'./assets/weights/{model}.pth')
shutil.rmtree("zips")
shutil.rmtree("unzips")
return "Success."
except:
return "There's been an error."
def upload_to_dataset(files, dir):
if dir == '':
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if not os.path.exists(dir):
os.makedirs(dir)
for file in files:
path=file.name
shutil.copy2(path,dir)
try:
gr.Info(i18n("处理数据"))
except:
pass
return i18n("处理数据"), {"value":dir,"__type__":"update"}
def download_model_files(model):
model_found = False
index_found = False
if os.path.exists(f'./assets/weights/{model}.pth'): model_found = True
if os.path.exists(f'./logs/{model}'):
for file in os.listdir(f'./logs/{model}'):
if file.endswith('.index') and 'added' in file:
log_file = file
index_found = True
if model_found and index_found:
return [f'./assets/weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
elif model_found and not index_found:
return f'./assets/weights/{model}.pth', "Could not find Index file."
elif index_found and not model_found:
return f'./logs/{model}/{log_file}', f'Make sure the Voice Name is correct. I could not find {model}.pth'
else:
return None, f'Could not find {model}.pth or corresponding Index file.'
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app:
with gr.Row():
gr.HTML("<img src='file/a.png' alt='image'>")
with gr.Tabs():
with gr.TabItem(i18n("模型推理")):
with gr.Row():
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("请选择说话人id"),
value=0,
visible=False,
interactive=True,
)
#clean_button.click(
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
#)
vc_transform0 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
)
but0 = gr.Button(i18n("转换"), variant="primary")
with gr.Row():
with gr.Column():
with gr.Row():
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
with gr.Row():
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
with gr.Row():
input_audio0 = gr.Dropdown(
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
value=find_audios(True),
choices=find_audios()
)
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
with gr.Column():
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
file_index2 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=get_indexes(),
interactive=True,
value=get_index()
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=0.66,
interactive=True,
)
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
with gr.Accordion(label=i18n("常规设置"), open=False):
f0method0 = gr.Radio(
label=i18n(
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
),
choices=["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"],
value="rmvpe",
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
value=0,
step=1,
interactive=True,
visible=False
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
value=0.21,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
),
value=0.33,
step=0.01,
interactive=True,
)
file_index1 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=True,
visible=False
)
refresh_button.click(
fn=change_choices,
inputs=[],
outputs=[sid0, file_index2, input_audio0],
api_name="infer_refresh",
)
# file_big_npy1 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
with gr.Row():
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
with gr.Row():
vc_output1 = gr.Textbox(label=i18n("输出信息"))
but0.click(
vc.vc_single,
[
spk_item,
input_audio0,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
# file_big_npy1,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_output1, vc_output2],
api_name="infer_convert",
)
with gr.Row():
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
with gr.Row():
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
vc_transform1 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
)
f0method1 = gr.Radio(
label=i18n(
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
),
choices=["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"],
value="pm",
interactive=True,
)
with gr.Row():
filter_radius1 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
visible=False
)
with gr.Row():
file_index3 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=True,
visible=False
)
file_index4 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
visible=False
)
refresh_button.click(
fn=lambda: change_choices()[1],
inputs=[],
outputs=file_index4,
api_name="infer_refresh_batch",
)
# file_big_npy2 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
index_rate2 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=1,
interactive=True,
visible=False
)
with gr.Row():
resample_sr1 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
value=0,
step=1,
interactive=True,
visible=False
)
rms_mix_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
value=0.21,
interactive=True,
)
protect1 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
),
value=0.33,
step=0.01,
interactive=True,
)
with gr.Row():
dir_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
value="./audios",
)
inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
with gr.Row():
format1 = gr.Radio(
label=i18n("导出文件格式"),
choices=["wav", "flac", "mp3", "m4a"],
value="wav",
interactive=True,
)
but1 = gr.Button(i18n("转换"), variant="primary")
vc_output3 = gr.Textbox(label=i18n("输出信息"))
but1.click(
vc.vc_multi,
[
spk_item,
dir_input,
opt_input,
inputs,
vc_transform1,
f0method1,
file_index1,
file_index2,
# file_big_npy2,
index_rate1,
filter_radius1,
resample_sr1,
rms_mix_rate1,
protect1,
format1,
],
[vc_output3],
api_name="infer_convert_batch",
)
sid0.change(
fn=vc.get_vc,
inputs=[sid0, protect0, protect1],
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
)
with gr.TabItem("Download Model"):
with gr.Row():
url=gr.Textbox(label="Enter the URL to the Model:")
with gr.Row():
model = gr.Textbox(label="Name your model:")
download_button=gr.Button("Download")
with gr.Row():
status_bar=gr.Textbox(label="")
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
with gr.Row():
gr.Markdown(
"""
❤️ If you use this and like it, help me keep it.❤️
https://paypal.me/lesantillan
"""
)
with gr.TabItem(i18n("训练")):
with gr.Row():
with gr.Column():
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
np7 = gr.Slider(
minimum=0,
maximum=config.n_cpu,
step=1,
label=i18n("提取音高和处理数据使用的CPU进程数"),
value=int(np.ceil(config.n_cpu / 1.5)),
interactive=True,
)
sr2 = gr.Radio(
label=i18n("目标采样率"),
choices=["40k", "48k"],
value="40k",
interactive=True,
visible=False
)
if_f0_3 = gr.Radio(
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
choices=[True, False],
value=True,
interactive=True,
visible=False
)
version19 = gr.Radio(
label=i18n("版本"),
choices=["v1", "v2"],
value="v2",
interactive=True,
visible=False,
)
trainset_dir4 = gr.Textbox(
label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
)
easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
but1 = gr.Button(i18n("处理数据"), variant="primary")
info1 = gr.Textbox(label=i18n("输出信息"), value="")
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
gpus6 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value=gpus,
interactive=True,
visible=F0GPUVisible,
)
gpu_info9 = gr.Textbox(
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
)
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label=i18n("请指定说话人id"),
value=0,
interactive=True,
visible=False
)
but1.click(
preprocess_dataset,
[trainset_dir4, exp_dir1, sr2, np7],
[info1],
api_name="train_preprocess",
)
with gr.Column():
f0method8 = gr.Radio(
label=i18n(
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
),
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
value="rmvpe_gpu",
interactive=True,
)
gpus_rmvpe = gr.Textbox(
label=i18n(
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
),
value="%s-%s" % (gpus, gpus),
interactive=True,
visible=F0GPUVisible,
)
but2 = gr.Button(i18n("特征提取"), variant="primary")
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
f0method8.change(
fn=change_f0_method,
inputs=[f0method8],
outputs=[gpus_rmvpe],
)
but2.click(
extract_f0_feature,
[
gpus6,
np7,
f0method8,
if_f0_3,
exp_dir1,
version19,
gpus_rmvpe,
],
[info2],
api_name="train_extract_f0_feature",
)
with gr.Column():
total_epoch11 = gr.Slider(
minimum=2,
maximum=1000,
step=1,
label=i18n("总训练轮数total_epoch"),
value=150,
interactive=True,
)
gpus16 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value="0",
interactive=True,
visible=True
)
but3 = gr.Button(i18n("训练模型"), variant="primary")
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
with gr.Accordion(label=i18n("常规设置"), open=False):
save_epoch10 = gr.Slider(
minimum=1,
maximum=50,
step=1,
label=i18n("保存频率save_every_epoch"),
value=25,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=1,
maximum=40,
step=1,
label=i18n("每张显卡的batch_size"),
value=default_batch_size,
interactive=True,
)
if_save_latest13 = gr.Radio(
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
choices=[i18n("是"), i18n("否")],
value=i18n("是"),
interactive=True,
visible=False
)
if_cache_gpu17 = gr.Radio(
label=i18n(
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
),
choices=[i18n("是"), i18n("否")],
value=i18n("否"),
interactive=True,
)
if_save_every_weights18 = gr.Radio(
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
choices=[i18n("是"), i18n("否")],
value=i18n("是"),
interactive=True,
)
with gr.Row():
download_model = gr.Button('5.Download Model')
with gr.Row():
model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
download_model.click(fn=download_model_files, inputs=[exp_dir1], outputs=[model_files, info3])
with gr.Row():
pretrained_G14 = gr.Textbox(
label=i18n("加载预训练底模G路径"),
value="assets/pretrained_v2/f0G40k.pth",
interactive=True,
visible=False
)
pretrained_D15 = gr.Textbox(
label=i18n("加载预训练底模D路径"),
value="assets/pretrained_v2/f0D40k.pth",
interactive=True,
visible=False
)
sr2.change(
change_sr2,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15],
)
version19.change(
change_version19,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15, sr2],
)
if_f0_3.change(
change_f0,
[if_f0_3, sr2, version19],
[f0method8, pretrained_G14, pretrained_D15],
)
with gr.Row():
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
but3.click(
click_train,
[
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
],
info3,
api_name="train_start",
)
but4.click(train_index, [exp_dir1, version19], info3)
but5.click(
train1key,
[
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
],
info3,
api_name="train_start_all",
)
if config.iscolab:
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
else:
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=not config.noautoopen,
server_port=config.listen_port,
quiet=True,
)
|