File size: 8,063 Bytes
fdbda89 ccc765e fdbda89 3a820e8 fdbda89 7e17176 fdbda89 7e17176 fdbda89 7e17176 3a820e8 7e17176 b3f2891 7e17176 fdbda89 7e17176 fdbda89 3a820e8 7e17176 3a820e8 7e17176 3a820e8 b3f2891 3a820e8 b3f2891 7e17176 fdbda89 3a820e8 fdbda89 3a820e8 b3f2891 3a820e8 4fcb518 fdbda89 4fcb518 fdbda89 7e17176 fdbda89 7e17176 fdbda89 7e17176 3a820e8 7e17176 3a820e8 fdbda89 3a820e8 fdbda89 3a820e8 fdbda89 b3f2891 8a5e901 fdbda89 7e17176 fdbda89 e1eca0e 7e17176 e1eca0e 7e17176 3a820e8 b3f2891 e1eca0e 7e17176 e1eca0e fdbda89 7e17176 fdbda89 7e17176 3a820e8 b3f2891 fdbda89 7e17176 fdbda89 ccc765e 7e17176 fdbda89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://huggingface.co/spaces/sayakpaul/demo-docker-gradio
"""
import argparse
import json
import platform
from typing import Tuple
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from project_settings import project_path, temp_directory
from toolbox.webrtcvad.vad import WebRTCVad
from toolbox.vad.vad import Vad, WebRTCVoiceClassifier, SileroVoiceClassifier, CallVoiceClassifier, process_speech_probs
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--ring_vad_examples_file",
default=(project_path / "ring_vad_examples.json").as_posix(),
type=str
)
args = parser.parse_args()
return args
vad: Vad = None
def click_ring_vad_button(audio: Tuple[int, np.ndarray],
model_name: str,
agg: int = 3,
frame_length_ms: int = 30,
frame_step_ms: int = 30,
padding_length_ms: int = 300,
max_silence_length_ms: int = 300,
start_ring_rate: float = 0.9,
end_ring_rate: float = 0.1,
max_speech_length_s: float = 2.0,
min_speech_length_s: float = 0.3,
):
global vad
if audio is None:
return None, "please upload audio."
sample_rate, signal = audio
if model_name == "webrtcvad" and frame_length_ms not in (10, 20, 30):
return None, "only 10, 20, 30 available for `frame_duration_ms`."
if model_name == "webrtcvad":
model = WebRTCVoiceClassifier(agg=agg)
elif model_name == "silerovad":
model = SileroVoiceClassifier(model_path=(project_path / "pretrained_models/silero_vad/silero_vad.jit").as_posix())
elif model_name == "call_voice":
model = CallVoiceClassifier(model_path=(project_path / "trained_models/cnn_voicemail_common_20231130").as_posix())
else:
return None, "`model_name` not valid."
vad = Vad(model=model,
start_ring_rate=start_ring_rate,
end_ring_rate=end_ring_rate,
frame_length_ms=frame_length_ms,
frame_step_ms=frame_step_ms,
padding_length_ms=padding_length_ms,
max_silence_length_ms=max_silence_length_ms,
max_speech_length_s=max_speech_length_s,
min_speech_length_s=min_speech_length_s,
sample_rate=sample_rate,
)
try:
vad_segments = list()
segments = vad.vad(signal)
vad_segments += segments
segments = vad.last_vad_segments()
vad_segments += segments
except Exception as e:
return None, str(e)
# speech_probs
speech_probs = process_speech_probs(
signal=signal,
speech_probs=vad.speech_probs,
frame_step=vad.frame_step,
)
time = np.arange(0, len(signal)) / sample_rate
plt.figure(figsize=(12, 5))
plt.plot(time, signal / 32768, color="b")
plt.plot(time, speech_probs, color="gray")
plt.axhline(y=start_ring_rate, xmin=0.0, xmax=1.0, color="gray", linestyle="-")
plt.axhline(y=start_ring_rate, xmin=0.0, xmax=frame_length_ms / 1000 / len(signal) * sample_rate, color="red", linestyle="-")
for start, end in vad_segments:
plt.axvline(x=start, ymin=0.15, ymax=0.85, color="g", linestyle="--")
plt.axvline(x=end, ymin=0.15, ymax=0.85, color="r", linestyle="--")
temp_image_file = temp_directory / "temp.jpg"
plt.savefig(temp_image_file)
image = Image.open(open(temp_image_file, "rb"))
return image, vad_segments
def main():
args = get_args()
brief_description = """
## Voice Activity Detection
"""
# examples
with open(args.ring_vad_examples_file, "r", encoding="utf-8") as f:
ring_vad_examples = json.load(f)
# ui
with gr.Blocks() as blocks:
gr.Markdown(value=brief_description)
with gr.Row():
with gr.Column(scale=5):
with gr.Tabs():
with gr.TabItem("ring_vad"):
gr.Markdown(value="")
with gr.Row():
with gr.Column(scale=1):
ring_wav = gr.Audio(label="wav")
with gr.Row():
ring_model_name = gr.Dropdown(choices=["webrtcvad", "silerovad", "call_voice"], value="webrtcvad", label="model_name")
ring_agg = gr.Dropdown(choices=[1, 2, 3], value=3, label="agg")
with gr.Row():
ring_frame_length_ms = gr.Slider(minimum=0, maximum=1000, value=30, label="frame_length_ms")
ring_frame_step_ms = gr.Slider(minimum=0, maximum=100, value=30, label="frame_step_ms")
with gr.Row():
ring_padding_length_ms = gr.Slider(minimum=0, maximum=1000, value=300, label="padding_length_ms")
ring_max_silence_length_ms = gr.Slider(minimum=0, maximum=1000, value=300, step=0.1, label="max_silence_length_ms")
with gr.Row():
ring_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.05, label="start_ring_rate")
ring_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="end_ring_rate")
with gr.Row():
ring_max_speech_length_s = gr.Slider(minimum=0.0, maximum=10.0, value=2.0, step=0.05, label="max_speech_length_s")
ring_min_speech_length_s = gr.Slider(minimum=0.0, maximum=2.0, value=0.3, step=0.05, label="min_speech_length_s")
ring_button = gr.Button("run", variant="primary")
with gr.Column(scale=1):
ring_image = gr.Image(label="image", height=300, width=720, show_label=False)
ring_end_points = gr.TextArea(label="end_points", max_lines=35)
gr.Examples(
examples=ring_vad_examples,
inputs=[
ring_wav,
ring_model_name, ring_agg,
ring_frame_length_ms, ring_frame_step_ms,
ring_padding_length_ms, ring_max_silence_length_ms,
ring_start_ring_rate, ring_end_ring_rate,
ring_max_speech_length_s, ring_min_speech_length_s
],
outputs=[ring_image, ring_end_points],
fn=click_ring_vad_button
)
# click event
ring_button.click(
click_ring_vad_button,
inputs=[
ring_wav,
ring_model_name, ring_agg,
ring_frame_length_ms, ring_frame_step_ms,
ring_padding_length_ms, ring_max_silence_length_ms,
ring_start_ring_rate, ring_end_ring_rate,
ring_max_speech_length_s, ring_min_speech_length_s
],
outputs=[ring_image, ring_end_points],
)
blocks.queue().launch(
share=False if platform.system() == "Windows" else False,
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
server_port=7860
)
return
if __name__ == "__main__":
main()
|