File size: 6,507 Bytes
fdbda89
 
ccc765e
 
 
fdbda89
 
 
 
 
 
 
 
 
 
 
 
7e17176
fdbda89
 
 
 
 
7e17176
 
fdbda89
 
 
 
 
 
7e17176
fdbda89
 
7e17176
 
 
 
 
 
 
 
 
 
fdbda89
7e17176
 
fdbda89
 
7e17176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdbda89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e17176
 
fdbda89
 
 
 
 
 
 
 
7e17176
fdbda89
 
 
 
7e17176
 
 
 
 
 
 
 
fdbda89
 
7e17176
 
fdbda89
 
7e17176
 
fdbda89
7e17176
fdbda89
 
7e17176
 
fdbda89
e1eca0e
7e17176
e1eca0e
7e17176
 
 
 
e1eca0e
7e17176
 
e1eca0e
fdbda89
 
7e17176
 
fdbda89
7e17176
 
 
 
fdbda89
7e17176
fdbda89
 
 
ccc765e
7e17176
 
fdbda89
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://huggingface.co/spaces/sayakpaul/demo-docker-gradio
"""
import argparse
import json
import platform
from typing import Tuple

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

from project_settings import project_path, temp_directory
from toolbox.webrtcvad.vad import WebRTCVad
from toolbox.vad.vad import Vad, WebRTCVoiceClassifier, SileroVoiceClassifier


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--ring_vad_examples_file",
        default=(project_path / "ring_vad_examples.json").as_posix(),
        type=str
    )
    args = parser.parse_args()
    return args


vad: Vad = None


def click_ring_vad_button(audio: Tuple[int, np.ndarray],
                          model_name: str,
                          agg: int = 3,
                          frame_duration_ms: int = 30,
                          padding_duration_ms: int = 300,
                          silence_duration_threshold: float = 0.3,
                          start_ring_rate: float = 0.9,
                          end_ring_rate: float = 0.1,
                          ):
    global vad

    if audio is None:
        return None, "please upload audio."
    sample_rate, signal = audio

    if model_name == "webrtcvad" and frame_duration_ms not in (10, 20, 30):
        return None, "only 10, 20, 30 available for `frame_duration_ms`."

    if model_name == "webrtcvad":
        model = WebRTCVoiceClassifier(agg=agg)
    elif model_name == "silerovad":
        model = SileroVoiceClassifier(model_name=(project_path / "pretrained_models/silero_vad/silero_vad.jit").as_posix())
    else:
        return None, "`model_name` not valid."

    vad = Vad(model=model,
              start_ring_rate=start_ring_rate,
              end_ring_rate=end_ring_rate,
              frame_duration_ms=frame_duration_ms,
              padding_duration_ms=padding_duration_ms,
              silence_duration_threshold=silence_duration_threshold,
              sample_rate=sample_rate,
              )

    try:
        vad_segments = list()
        segments = vad.vad(signal)
        vad_segments += segments
        segments = vad.last_vad_segments()
        vad_segments += segments
    except Exception as e:
        return None, str(e)

    time = np.arange(0, len(signal)) / sample_rate
    plt.figure(figsize=(12, 5))
    plt.plot(time, signal / 32768, color='b')
    for start, end in vad_segments:
        plt.axvline(x=start, ymin=0.25, ymax=0.75, color='g', linestyle='--', label='开始端点')  # 标记开始端点
        plt.axvline(x=end, ymin=0.25, ymax=0.75, color='r', linestyle='--', label='结束端点')  # 标记结束端点

    temp_image_file = temp_directory / "temp.jpg"
    plt.savefig(temp_image_file)
    image = Image.open(open(temp_image_file, "rb"))

    return image, vad_segments


def main():
    args = get_args()

    brief_description = """
    ## Voice Activity Detection

    """

    # examples
    with open(args.ring_vad_examples_file, "r", encoding="utf-8") as f:
        ring_vad_examples = json.load(f)

    # ui
    with gr.Blocks() as blocks:
        gr.Markdown(value=brief_description)

        with gr.Row():
            with gr.Column(scale=5):
                with gr.Tabs():
                    with gr.TabItem("ring_vad"):
                        gr.Markdown(value="")

                        with gr.Row():
                            with gr.Column(scale=1):
                                ring_wav = gr.Audio(label="wav")

                                with gr.Row():
                                    ring_model_name = gr.Dropdown(choices=["webrtcvad", "silerovad"], value="webrtcvad", label="model_name")

                                with gr.Row():
                                    ring_agg = gr.Dropdown(choices=[1, 2, 3], value=3, label="agg")
                                    ring_frame_duration_ms = gr.Slider(minimum=0, maximum=100, value=30, label="frame_duration_ms")

                                with gr.Row():
                                    ring_padding_duration_ms = gr.Slider(minimum=0, maximum=1000, value=300, label="padding_duration_ms")
                                    ring_silence_duration_threshold = gr.Slider(minimum=0, maximum=1.0, value=0.3, step=0.1, label="silence_duration_threshold")

                                with gr.Row():
                                    ring_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="start_ring_rate")
                                    ring_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.1, label="end_ring_rate")

                                ring_button = gr.Button("retrieval", variant="primary")

                            with gr.Column(scale=1):
                                ring_image = gr.Image(label="image", height=300, width=720, show_label=False)
                                ring_end_points = gr.TextArea(label="end_points", max_lines=35)

                        gr.Examples(
                            examples=ring_vad_examples,
                            inputs=[
                                ring_wav,
                                ring_model_name, ring_agg, ring_frame_duration_ms,
                                ring_padding_duration_ms, ring_silence_duration_threshold,
                                ring_start_ring_rate, ring_end_ring_rate
                            ],
                            outputs=[ring_image, ring_end_points],
                            fn=click_ring_vad_button
                        )

                        # click event
                        ring_button.click(
                            click_ring_vad_button,
                            inputs=[
                                ring_wav,
                                ring_model_name, ring_agg, ring_frame_duration_ms,
                                ring_padding_duration_ms, ring_silence_duration_threshold,
                                ring_start_ring_rate, ring_end_ring_rate
                            ],
                            outputs=[ring_image, ring_end_points],
                        )

    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        server_port=7860
    )
    return


if __name__ == "__main__":
    main()