Spaces:
Sleeping
Sleeping
File size: 5,851 Bytes
d4a5e8c 97cc5f3 d4a5e8c d0a28d9 9d03774 867343a 68f0d8d d4a5e8c 27444e5 9d03774 27444e5 d4a5e8c 9d03774 68f0d8d 9338b19 9d03774 68f0d8d c949392 867343a 68f0d8d 9d03774 867343a 9d03774 867343a 9d03774 68f0d8d 9d03774 68f0d8d 9d03774 68f0d8d 9d03774 5915a6a 9d03774 68f0d8d 5915a6a 68f0d8d 5915a6a 68f0d8d 5915a6a ea1feff 68f0d8d 5915a6a 68f0d8d 5915a6a 9d03774 5b71666 5915a6a 68f0d8d ea1feff 5915a6a 68f0d8d 0546cb0 68f0d8d 5915a6a 68f0d8d 5915a6a a09c8c9 5915a6a a09c8c9 68f0d8d 9d03774 68f0d8d 9d03774 5915a6a 9d03774 c949392 d4a5e8c 9d03774 d01e2e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
import numpy as np
from huggingface_hub import InferenceClient
import os
import requests
import scipy.io.wavfile
import io
import time
client = InferenceClient(
"meta-llama/Meta-Llama-3-8B-Instruct",
token=os.getenv('hf_token')
)
def process_audio(audio_data):
if audio_data is None:
return "No audio provided.", ""
# 检查 audio_data 是否是元组,并提取数据
if isinstance(audio_data, tuple):
sample_rate, data = audio_data
else:
return "Invalid audio data format.", ""
# Convert the audio data to WAV format in memory
buf = io.BytesIO()
scipy.io.wavfile.write(buf, sample_rate, data)
wav_bytes = buf.getvalue()
buf.close()
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v2"
headers = {"Authorization": f"Bearer {os.getenv('hf_token')}"}
def query(wav_data):
response = requests.post(API_URL, headers=headers, data=wav_data)
return response.json()
# Call the API to process the audio
output = query(wav_bytes)
print(output) # Check output in console (logs in HF space)
# Check the API response
if 'text' in output:
recognized_text = output['text']
return recognized_text, recognized_text
else:
recognized_text = "The ASR module is still loading, please press the button again!"
return recognized_text, ""
# 定义函数以禁用按钮并显示加载指示器
def disable_components():
# 更新 recognized_text 的内容,提示用户正在处理
recognized_text_update = gr.update(value='Voice Recognization Running...')
# 禁用 process_button
process_button_update = gr.update(interactive=False)
# 显示加载动画
loading_animation_update = gr.update(visible=True)
return recognized_text_update, process_button_update, loading_animation_update
# 定义函数以启用按钮并隐藏加载指示器
def enable_components(recognized_text):
process_button_update = gr.update(interactive=True)
# 隐藏加载动画
loading_animation_update = gr.update(visible=False)
return recognized_text, process_button_update, loading_animation_update
llama_responded = 0
responded_answer = ""
def respond(
message,
history: list[tuple[str, str]]
):
global llama_responded
global responded_answer
system_message = "You are a helpful chatbot that answers questions. Give any answer within 50 words."
messages = [{"role": "system", "content": system_message}]
for val in history:
print(val[0])
if val[0] != None:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
stream=True,
):
token = message.choices[0].delta.content
response += token
llama_responded = 1
responded_answer = response
return response
def update_response_display():
while not llama_responded:
time.sleep(1)
def tts_part():
global llama_responded
global responded_answer
result = ""
if responded_answer != "":
text = responded_answer
client = Client("tonyassi/voice-clone")
result = client.predict(
text,
audio=file('siri.wav'),
api_name="/predict"
)
llama_responded = 0
responded_answer = ""
return result
def create_interface():
with gr.Blocks() as demo:
# Chat interface using the custom chatbot instance
chatbot = gr.ChatInterface(
title="Exodia AI Assistant",
fill_height=True,
fn=respond,
submit_btn="Start Chatting"
)
user_start = chatbot.textbox.submit(
fn=update_response_display,
inputs=[],
outputs=[],
)
user_click = chatbot.submit_btn.click(
fn=update_response_display,
inputs=[],
outputs=[],
)
# Audio input section
with gr.Row():
audio_input = gr.Audio(
sources="microphone",
type="numpy", # Get audio data and sample rate
label="Say Something..."
)
recognized_text = gr.Textbox(label="Recognized Text",interactive=False)
# Process audio button
process_button = gr.Button("Process Audio")
# Loading animation
loading_animation = gr.HTML(
value='<div style="text-align: center;"><span style="font-size: 18px;">ASR Model is running...</span></div>',
visible=False
)
text_speaker = gr.Audio(
label="Generated Audio"
)
# Associate audio processing function and update component states on click
process_button.click(
fn=disable_components,
inputs=[],
outputs=[recognized_text, process_button, loading_animation]
).then(
fn=process_audio,
inputs=[audio_input],
outputs=[recognized_text, chatbot.textbox]
).then(
fn=enable_components,
inputs=[recognized_text],
outputs=[recognized_text, process_button, loading_animation]
)
user_start.then(
fn=tts_part,
inputs=[],
outputs=text_speaker
)
user_click.then(
fn=tts_part,
inputs=[],
outputs=text_speaker
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|