|
'''ShuffleNet in PyTorch. |
|
|
|
See the paper "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices" for more details. |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class ShuffleBlock(nn.Module): |
|
def __init__(self, groups): |
|
super(ShuffleBlock, self).__init__() |
|
self.groups = groups |
|
|
|
def forward(self, x): |
|
'''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]''' |
|
N,C,H,W = x.size() |
|
g = self.groups |
|
return x.view(N,g,C//g,H,W).permute(0,2,1,3,4).reshape(N,C,H,W) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
def __init__(self, in_planes, out_planes, stride, groups): |
|
super(Bottleneck, self).__init__() |
|
self.stride = stride |
|
|
|
mid_planes = out_planes/4 |
|
g = 1 if in_planes==24 else groups |
|
self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False) |
|
self.bn1 = nn.BatchNorm2d(mid_planes) |
|
self.shuffle1 = ShuffleBlock(groups=g) |
|
self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False) |
|
self.bn2 = nn.BatchNorm2d(mid_planes) |
|
self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False) |
|
self.bn3 = nn.BatchNorm2d(out_planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride == 2: |
|
self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1)) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.shuffle1(out) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
res = self.shortcut(x) |
|
out = F.relu(torch.cat([out,res], 1)) if self.stride==2 else F.relu(out+res) |
|
return out |
|
|
|
|
|
class ShuffleNet(nn.Module): |
|
def __init__(self, cfg): |
|
super(ShuffleNet, self).__init__() |
|
out_planes = cfg['out_planes'] |
|
num_blocks = cfg['num_blocks'] |
|
groups = cfg['groups'] |
|
|
|
self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(24) |
|
self.in_planes = 24 |
|
self.layer1 = self._make_layer(out_planes[0], num_blocks[0], groups) |
|
self.layer2 = self._make_layer(out_planes[1], num_blocks[1], groups) |
|
self.layer3 = self._make_layer(out_planes[2], num_blocks[2], groups) |
|
self.linear = nn.Linear(out_planes[2], 10) |
|
|
|
def _make_layer(self, out_planes, num_blocks, groups): |
|
layers = [] |
|
for i in range(num_blocks): |
|
stride = 2 if i == 0 else 1 |
|
cat_planes = self.in_planes if i == 0 else 0 |
|
layers.append(Bottleneck(self.in_planes, out_planes-cat_planes, stride=stride, groups=groups)) |
|
self.in_planes = out_planes |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def ShuffleNetG2(): |
|
cfg = { |
|
'out_planes': [200,400,800], |
|
'num_blocks': [4,8,4], |
|
'groups': 2 |
|
} |
|
return ShuffleNet(cfg) |
|
|
|
def ShuffleNetG3(): |
|
cfg = { |
|
'out_planes': [240,480,960], |
|
'num_blocks': [4,8,4], |
|
'groups': 3 |
|
} |
|
return ShuffleNet(cfg) |
|
|
|
|
|
def test(): |
|
net = ShuffleNetG2() |
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print(y) |
|
|
|
|
|
|