File size: 11,202 Bytes
3fc0306
 
 
4debe07
3fc0306
 
 
4debe07
 
 
 
 
3fc0306
 
 
 
 
 
 
 
 
 
 
 
 
4debe07
 
 
 
 
3fc0306
 
 
 
4debe07
 
 
 
3fc0306
 
 
 
 
4debe07
 
3fc0306
 
 
4debe07
 
 
 
 
3fc0306
 
 
 
 
 
 
 
 
 
 
 
 
4debe07
 
3fc0306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4debe07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc0306
4debe07
3fc0306
4debe07
 
 
 
 
 
 
 
3fc0306
4debe07
 
 
 
 
 
 
3fc0306
4debe07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc0306
4debe07
 
 
 
 
 
 
 
 
 
 
 
 
3fc0306
4debe07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc0306
 
 
 
 
 
 
 
 
 
 
 
7b58807
3fc0306
 
4debe07
 
 
 
 
 
3fc0306
 
 
 
 
 
 
 
4debe07
 
 
3fc0306
 
4debe07
 
 
3fc0306
 
 
 
 
4debe07
 
3fc0306
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import cv2
import os
from PIL import Image, ImageDraw, ImageFont, ImageOps
import numpy as np
from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
from loguru import logger
import subprocess
import copy
import time

import warnings

import torch
warnings.filterwarnings("ignore")

# grounding DINO
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T

from torchvision.ops import box_convert

# segment anything
from segment_anything import build_sam, SamPredictor 

from huggingface_hub import hf_hub_download

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

if not os.path.exists('./sam_vit_h_4b8939.pth'):
    logger.info(f"get sam_vit_h_4b8939.pth...")
    result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
    print(f'wget sam_vit_h_4b8939.pth result = {result}')   

# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filename = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth' 
output_dir = "outputs"
groundingdino_device = 'cpu'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

print(f'device={device}')

# make dir
os.makedirs(output_dir, exist_ok=True)


def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
    args = SLConfig.fromfile(model_config_path) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model    

def load_image_and_transform(init_image):
    init_image = init_image.convert("RGB")
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    image, _ = transform(init_image, None) # 3, h, w
    return init_image, image

def image_transform_grounding_for_vis(init_image):
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
    ])
    image, _ = transform(init_image, None) # 3, h, w
    return image

def plot_boxes_to_image(image_pil, tgt):
    H, W = tgt["size"]
    boxes = tgt["boxes"]
    labels = tgt["labels"]
    assert len(boxes) == len(labels), "boxes and labels must have same length"

    draw = ImageDraw.Draw(image_pil)
    mask = Image.new("L", image_pil.size, 0)
    mask_draw = ImageDraw.Draw(mask)

    # draw boxes and masks
    for box, label in zip(boxes, labels):
        # from 0..1 to 0..W, 0..H
        box = box * torch.Tensor([W, H, W, H])
        # from xywh to xyxy
        box[:2] -= box[2:] / 2
        box[2:] += box[:2]
        # random color
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        # draw
        x0, y0, x1, y1 = box
        x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

        draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
        # draw.text((x0, y0), str(label), fill=color)

        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((x0, y0), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (x0, y0, w + x0, y0 + h)
        # bbox = draw.textbbox((x0, y0), str(label))
        draw.rectangle(bbox, fill=color)
        font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
        font_size = 36
        new_font = ImageFont.truetype(font, font_size)

        draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")

        mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)

    return image_pil, mask

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.8])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def show_box(box, ax, label):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) 
    ax.text(x0, y0, label, fontdict={'fontsize': 7})

def get_grounding_box(image_tensor, grounding_caption, box_threshold, text_threshold):
    # run grounding
    boxes, logits, phrases = predict(groundingDino_model, image_tensor, grounding_caption, box_threshold, text_threshold, device=groundingdino_device)
    # annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
    # image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
    return boxes, phrases

def grounding_sam(input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold):
    text_prompt = text_prompt.strip()

    # user guidance messages
    if not (task_type == 'inpainting' or task_type == 'remove'):
        if text_prompt == '':
            return [], gr.Gallery.update(label='Please input detection prompt~~')
    
    if input_image is None:
            return [], gr.Gallery.update(label='Please upload a image~~')
    
    file_temp = int(time.time())
    image_pil, image_tensor = load_image_and_transform(input_image['image'])

    # get dino bounding boxes
    boxes, phrases = get_grounding_box(image_tensor, text_prompt, box_threshold, text_threshold)
    if boxes.size(0) == 0:
            logger.info(f'run_grounded_sam_[]_{task_type}_[{text_prompt}]_1_[No objects detected, please try others.]_')
            return [], gr.Gallery.update(label='No objects detected, please try others!')
    
    size = image_pil.size
    pred_dict = {
            "boxes": boxes,
            "size": [size[1], size[0]],  # H,W
            "labels": phrases,
        }

    # store and save dino output
    output_images = []
    image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
    image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg")
    image_with_box.save(image_path)
    detection_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
    os.remove(image_path)
    output_images.append(detection_image_result)

    if task_type == 'segment':
        image = np.array(input_image['image'])
        sam_predictor.set_image(image)
    
        # map the bounding boxes from dino to original size
        h, w = size[1], size[0]
        boxes = boxes * torch.Tensor([w, h, w, h])
        boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy")
        # can use box_convert function or below
        # for i in range(boxes.size(0)):
        #     boxes[i] = boxes[i] * torch.Tensor([W, H, W, H])
        #     boxes[i][:2] -= boxes[i][2:] / 2   # top left corner
        #     boxes[i][2:] += boxes[i][:2]       # bottom left corner

        # transform boxes from original ratio to sam's zoomed ratio 
        transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])

        # predict masks/segmentation
        # masks: [number of masks, C, H, W] but note that H and W is 512
        masks, _, _ = sam_predictor.predict_torch(
            point_coords = None,
            point_labels = None,
            boxes = transformed_boxes,
            multimask_output = False,
        )

        # draw output image
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        for mask in masks:
            show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
        for box, label in zip(boxes, phrases):
            show_box(box.numpy(), plt.gca(), label)
        plt.axis('off')
        image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
        plt.savefig(image_path, bbox_inches="tight")
        segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        os.remove(image_path)
        output_images.append(segment_image_result)

        return output_images, gr.Gallery.update(label='result images')  

    
groundingDino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, groundingdino_device)
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))

if __name__ == "__main__":

    parser = argparse.ArgumentParser("Grounding SAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    args = parser.parse_args()

    print(f'args = {args}')

    block = gr.Blocks().queue()
    with block:
        gr.Markdown("# GroundingDino and SAM")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")    
                task_type = gr.Radio(["segment"],  value="segment", 
                                                label='Task type',interactive=True, visible=True)
                text_prompt = gr.Textbox(label="Detection Prompt, seperating each name with ',', i.e.: cat,dog,chair ]", \
                                         placeholder="Cannot be empty")                                                

                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )
                    iou_threshold = gr.Slider(
                        label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
                    ) 

            with gr.Column():
                gallery = gr.Gallery(
                    label="result images", show_label=True, elem_id="gallery"
                ).style(grid=[2], full_width=True, full_height=True)  
                # gallery = gr.Gallery(label="Generated images", show_label=False).style(
                #         grid=[1], height="auto", container=True, full_width=True, full_height=True)
        
        DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) and kudos to thier excellent works. Welcome everyone to try this out and learn together!'
        gr.Markdown(DESCRIPTION)
        run_button.click(fn=grounding_sam, inputs=[
                        input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold], outputs=[gallery, gallery])

    block.launch(share=False, show_api=False, show_error=True)