jackyccl's picture
change app.py message
7b58807
raw
history blame
11.2 kB
import argparse
import cv2
import os
from PIL import Image, ImageDraw, ImageFont, ImageOps
import numpy as np
from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
from loguru import logger
import subprocess
import copy
import time
import warnings
import torch
warnings.filterwarnings("ignore")
# grounding DINO
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
from torchvision.ops import box_convert
# segment anything
from segment_anything import build_sam, SamPredictor
from huggingface_hub import hf_hub_download
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
if not os.path.exists('./sam_vit_h_4b8939.pth'):
logger.info(f"get sam_vit_h_4b8939.pth...")
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
print(f'wget sam_vit_h_4b8939.pth result = {result}')
# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filename = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth'
output_dir = "outputs"
groundingdino_device = 'cpu'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'device={device}')
# make dir
os.makedirs(output_dir, exist_ok=True)
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def load_image_and_transform(init_image):
init_image = init_image.convert("RGB")
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
font_size = 36
new_font = ImageFont.truetype(font, font_size)
draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.8])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label, fontdict={'fontsize': 7})
def get_grounding_box(image_tensor, grounding_caption, box_threshold, text_threshold):
# run grounding
boxes, logits, phrases = predict(groundingDino_model, image_tensor, grounding_caption, box_threshold, text_threshold, device=groundingdino_device)
# annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
# image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return boxes, phrases
def grounding_sam(input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold):
text_prompt = text_prompt.strip()
# user guidance messages
if not (task_type == 'inpainting' or task_type == 'remove'):
if text_prompt == '':
return [], gr.Gallery.update(label='Please input detection prompt~~')
if input_image is None:
return [], gr.Gallery.update(label='Please upload a image~~')
file_temp = int(time.time())
image_pil, image_tensor = load_image_and_transform(input_image['image'])
# get dino bounding boxes
boxes, phrases = get_grounding_box(image_tensor, text_prompt, box_threshold, text_threshold)
if boxes.size(0) == 0:
logger.info(f'run_grounded_sam_[]_{task_type}_[{text_prompt}]_1_[No objects detected, please try others.]_')
return [], gr.Gallery.update(label='No objects detected, please try others!')
size = image_pil.size
pred_dict = {
"boxes": boxes,
"size": [size[1], size[0]], # H,W
"labels": phrases,
}
# store and save dino output
output_images = []
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg")
image_with_box.save(image_path)
detection_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
os.remove(image_path)
output_images.append(detection_image_result)
if task_type == 'segment':
image = np.array(input_image['image'])
sam_predictor.set_image(image)
# map the bounding boxes from dino to original size
h, w = size[1], size[0]
boxes = boxes * torch.Tensor([w, h, w, h])
boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy")
# can use box_convert function or below
# for i in range(boxes.size(0)):
# boxes[i] = boxes[i] * torch.Tensor([W, H, W, H])
# boxes[i][:2] -= boxes[i][2:] / 2 # top left corner
# boxes[i][2:] += boxes[i][:2] # bottom left corner
# transform boxes from original ratio to sam's zoomed ratio
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
# predict masks/segmentation
# masks: [number of masks, C, H, W] but note that H and W is 512
masks, _, _ = sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes, phrases):
show_box(box.numpy(), plt.gca(), label)
plt.axis('off')
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
plt.savefig(image_path, bbox_inches="tight")
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
os.remove(image_path)
output_images.append(segment_image_result)
return output_images, gr.Gallery.update(label='result images')
groundingDino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, groundingdino_device)
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
print(f'args = {args}')
block = gr.Blocks().queue()
with block:
gr.Markdown("# GroundingDino and SAM")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
task_type = gr.Radio(["segment"], value="segment",
label='Task type',interactive=True, visible=True)
text_prompt = gr.Textbox(label="Detection Prompt, seperating each name with ',', i.e.: cat,dog,chair ]", \
placeholder="Cannot be empty")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
iou_threshold = gr.Slider(
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
)
with gr.Column():
gallery = gr.Gallery(
label="result images", show_label=True, elem_id="gallery"
).style(grid=[2], full_width=True, full_height=True)
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) and kudos to thier excellent works. Welcome everyone to try this out and learn together!'
gr.Markdown(DESCRIPTION)
run_button.click(fn=grounding_sam, inputs=[
input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold], outputs=[gallery, gallery])
block.launch(share=False, show_api=False, show_error=True)