dream-cacher / app.py
jamescalam's picture
Update app.py
a908ef9
import gradio as gr
from diffusers import StableDiffusionPipeline
import torch
import io
from PIL import Image
import os
from cryptography.fernet import Fernet
from google.cloud import storage
import pinecone
import json
import uuid
import pandas as pd
# decrypt Storage Cloud credentials
fernet = Fernet(os.environ['DECRYPTION_KEY'])
with open('cloud-storage.encrypted', 'rb') as fp:
encrypted = fp.read()
creds = json.loads(fernet.decrypt(encrypted).decode())
# then save creds to file
with open('cloud-storage.json', 'w', encoding='utf-8') as fp:
fp.write(json.dumps(creds, indent=4))
# connect to Cloud Storage
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'cloud-storage.json'
storage_client = storage.Client()
bucket = storage_client.get_bucket('hf-diffusion-images')
# get api key for pinecone auth
PINECONE_KEY = os.environ['PINECONE_KEY']
index_id = "hf-diffusion"
# init connection to pinecone
pinecone.init(
api_key=PINECONE_KEY,
environment="us-west1-gcp"
)
if index_id not in pinecone.list_indexes():
raise ValueError(f"Index '{index_id}' not found")
index = pinecone.Index(index_id)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using '{device}' device...")
# init all of the models and move them to a given GPU
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", use_auth_token=os.environ['HF_AUTH']
)
pipe.to(device)
missing_im = Image.open('missing.png')
threshold = 0.85
def encode_text(text: str):
text_inputs = pipe.tokenizer(
text, return_tensors='pt'
).to(device)
text_embeds = pipe.text_encoder(**text_inputs)
text_embeds = text_embeds.pooler_output.cpu().tolist()[0]
return text_embeds
def prompt_query(text: str):
print(f"Running prompt_query('{text}')")
embeds = encode_text(text)
try:
print("Try query pinecone")
xc = index.query(embeds, top_k=30, include_metadata=True)
print("query successful")
except Exception as e:
print(f"Error during query: {e}")
# reinitialize connection
print("Try reinitialize Pinecone connection")
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp')
index2 = pinecone.Index(index_id)
try:
print("Now try querying pinecone again")
xc = index2.query(embeds, top_k=30, include_metadata=True)
print("query successful")
except Exception as e:
raise ValueError(e)
prompts = [
match['metadata']['prompt'] for match in xc['matches']
]
scores = [round(match['score'], 2) for match in xc['matches']]
# deduplicate while preserving order
df = pd.DataFrame({'Similarity': scores, 'Prompt': prompts})
df = df.drop_duplicates(subset='Prompt', keep='first')
df = df[df['Prompt'].str.len() > 7].head()
return df
def diffuse(text: str):
# diffuse
out = pipe(text)
if any(out.nsfw_content_detected):
return {}
else:
_id = str(uuid.uuid4())
# add image to Cloud Storage
im = out.images[0]
im.save(f'{_id}.png', format='png')
added_gcp = False
# push to storage
try:
print("try push to Cloud Storage")
blob = bucket.blob(f'images/{_id}.png')
print("try upload_from_filename")
blob.upload_from_filename(f'{_id}.png')
added_gcp = True
# add embedding and metadata to Pinecone
embeds = encode_text(text)
meta = {
'prompt': text,
'image_url': f'images/{_id}.png'
}
try:
print("now try upsert to pinecone")
index.upsert([(_id, embeds, meta)])
print("upsert successful")
except Exception as e:
try:
print("hit exception, now trying to reinit Pinecone connection")
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp')
index2 = pinecone.Index(index_id)
print(f"reconnected to pinecone '{index_id}' index")
index2.upsert([(_id, embeds, meta)])
print("upsert successful")
except Exception as e:
print(f"PINECONE_ERROR: {e}")
except Exception as e:
print(f"ERROR: New image not uploaded due to error with {'Pinecone' if added_gcp else 'Cloud Storage'}")
# delete local file
os.remove(f'{_id}.png')
return out.images[0]
def get_image(url: str):
blob = bucket.blob(url).download_as_string()
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
return im
def test_image(_id, image):
try:
image.save('tmp.png')
return True
except OSError:
# delete corrupted file from pinecone and cloud
index.delete(ids=[_id])
bucket.blob(f"images/{_id}.png").delete()
print(f"DELETED '{_id}'")
return False
def prompt_image(text: str):
print(f"prompt_image('{text}')")
embeds = encode_text(text)
try:
print("try query pinecone")
xc = index.query(embeds, top_k=9, include_metadata=True)
except Exception as e:
print(f"Error during query: {e}")
# reinitialize connection
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp')
index2 = pinecone.Index(index_id)
try:
print("try query pinecone after reinit")
xc = index2.query(embeds, top_k=9, include_metadata=True)
except Exception as e:
raise ValueError(e)
image_urls = [
match['metadata']['image_url'] for match in xc['matches']
]
scores = [match['score'] for match in xc['matches']]
ids = [match['id'] for match in xc['matches']]
images = []
print("Begin looping through (ids, image_urls)")
for _id, image_url in zip(ids, image_urls):
try:
print("download_as_string from GCP")
blob = bucket.blob(image_url).download_as_string()
print("downloaded successfully")
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
print("image opened successfully")
if test_image(_id, im):
images.append(im)
print("image accessible")
else:
images.append(missing_im)
print("image NOT accessible")
except ValueError:
print(f"ValueError: '{image_url}'")
return images, scores
# __APP FUNCTIONS__
def set_suggestion(text: str):
return gr.TextArea.update(value=text[0])
def set_images(text: str):
images, scores = prompt_image(text)
match_found = False
for score in scores:
if score > threshold:
match_found = True
if match_found:
print("MATCH FOUND")
return gr.Gallery.update(value=images)
else:
print("NO MATCH FOUND")
diffuse(text)
print(f"diffusion for '{text}' complete")
images, scores = prompt_image(text)
return gr.Gallery.update(value=images)
# __CREATE APP__
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Dream Cacher
"""
)
with gr.Row():
with gr.Column():
prompt = gr.TextArea(
value="A person surfing",
placeholder="Enter a prompt to dream about",
interactive=True
)
search = gr.Button(value="Search!")
suggestions = gr.Dataframe(
values=[],
headers=['Similarity', 'Prompt']
)
# event listener for change in prompt
prompt.change(
prompt_query, prompt, suggestions,
show_progress=False
)
# results column
with gr.Column():
pics = gr.Gallery()
pics.style(grid=3)
# search event listening
try:
search.click(set_images, prompt, pics)
except OSError:
print("OSError")
demo.launch()