Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,419 Bytes
67d69a3 a1732e3 67d69a3 a3814f8 67d69a3 89e4ae0 67d69a3 89e4ae0 f1ac6b9 67d69a3 814e69a 89e4ae0 67d69a3 a0f5d9f 67d69a3 a1732e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from PIL import Image
import torch
import torchvision.transforms as transforms
from safetensors.torch import load_file
def preprocess_img(img, img_size, normalize=False):
if type(img) == str: img = Image.open(img)
original_size = img.size
if normalize:
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def postprocess_img(img, original_size, normalize=False):
img = img.detach().cpu().squeeze(0)
# Denormalize the image
if normalize:
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1)
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1)
img = img * std + mean
img = torch.clamp(img, 0, 1)
img = transforms.ToPILImage()(img)
img = img.resize(original_size, Image.Resampling.LANCZOS)
return img
def load_model_without_module(model, model_path, device):
state_dict = {
k[7:] if k.startswith('module.') else k: v
for k, v in load_file(model_path, device=device).items()
}
model.load_state_dict(state_dict) |