jamino30's picture
Upload folder using huggingface_hub
c26eeef verified
raw
history blame
4.97 kB
import time
from PIL import Image
from tqdm import tqdm
import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import torch.amp as amp
import torchvision.transforms as transforms
import torchvision.models as models
import gradio as gr
from gradio_imageslider import ImageSlider
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('DEVICE:', device)
class VGG_19(nn.Module):
def __init__(self):
super(VGG_19, self).__init__()
self.model = models.vgg19(pretrained=True).features[:30]
for i, _ in enumerate(self.model):
if i in [4, 9, 18, 27]:
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, x):
features = []
for i, layer in enumerate(self.model):
x = layer(x)
if i in [0, 5, 10, 19, 28]:
features.append(x)
return features
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
def load_img(img: Image, img_size):
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def load_img_from_path(path_to_image, img_size):
img = Image.open(path_to_image)
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def save_img(img, original_size):
img = img.cpu().clone()
img = img.squeeze(0)
# address tensor value scaling and quantization
img = torch.clamp(img, 0, 1)
img = img.mul(255).byte()
unloader = transforms.ToPILImage()
img = unloader(img)
img = img.resize(original_size, Image.Resampling.LANCZOS)
return img
style_options = {
'Starry Night': 'StarryNight.jpg',
'Great Wave': 'GreatWave.jpg',
'Lego Bricks': 'LegoBricks.jpg',
'Oil Painting': 'OilPainting.jpg',
}
style_options = {k: f'./style_images/{v}' for k, v in style_options.items()}
@spaces.GPU
def inference(content_image, style_image, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('STYLE:', style_image)
img_size = 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
iters = 100
lr = 1e-1
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for iter in tqdm(range(iters+1)):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield content_image, save_img(generated_img, original_size)
interface = gr.Interface(
fn=inference,
inputs=[
gr.Image(label='Content', type='pil', sources=['upload'], elem_id='content'),
gr.Dropdown(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value', elem_id='style'),
],
outputs=[
ImageSlider(position=0.15, label='Output', show_download_button=True, interactive=False, elem_id='output'),
],
title="🖼️ Neural Style Transfer",
api_name='style',
allow_flagging='manual',
examples=[
['./content_images/TajMahal.jpg', 'Starry Night'],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks'],
['./content_images/Beach.jpg', 'Oil Painting'],
['./content_images/StandingOnCliff.png', 'Great Wave'],
],
cache_examples='lazy'
).launch(inbrowser=True)