File size: 969 Bytes
4961115
96da553
90b10ad
96da553
 
fa2b247
90b10ad
4961115
 
fa2b247
90b10ad
89a4135
fa2b247
 
4961115
fa2b247
 
90b10ad
fa2b247
 
89a4135
fa2b247
89a4135
 
cb2c11c
89a4135
cb2c11c
 
89a4135
cb2c11c
89a4135
cb2c11c
8a2f6f7
89a4135
fa2b247
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch

from fastai.text.all import *
from blurr.text.data.all import *
from blurr.text.modeling.all import *
from transformers import BartForConditionalGeneration

# Load the pre-trained model and tokenizer (adjust for Bart if needed)
pretrained_model_name = "facebook/bart-large-cnn"  # Or "facebook/bart-base"
hf_tokenizer = BartTokenizer.from_pretrained(pretrained_model_name)

def summarize(article):
    # Define your data transformation pipeline here, if applicable
    # ...

    # Load the exported model
    learn = load_learner('article_highlights.pkl')

    # Generate the summary
    summary = learn.blurr_generate(article)[0]

    return summary

# Create the Gradio interface
iface = gr.Interface(
    fn=summarize,
    inputs="text",
    outputs="text",
    title="Article Summarizer (Part 3)",
    description="Enter an article and get a summary.",
    examples=[["This is an example article..."]]
)

# Launch the Gradio interface
iface.launch()