Spaces:
Sleeping
Sleeping
File size: 28,450 Bytes
3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 4fa6a98 3ea7a36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
import os
import re
import csv
import json
import math
import openai
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm import tqdm
from scipy import stats
from datetime import datetime
from collections import defaultdict, Counter
from matplotlib.ticker import FuncFormatter
from matplotlib.colors import ListedColormap
import panel as pn
import altair as alt
def choices_to_df(choices, hue):
df = pd.DataFrame(choices, columns=['choices'])
df['hue'] = hue
df['hue'] = df['hue'].astype(str)
return df
binrange = (0, 100)
moves = []
with open('dictator.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
col2idx = {col: idx for idx, col in enumerate(header)}
for row in reader:
record = {col: row[idx] for col, idx in col2idx.items()}
if record['Role'] != 'first': continue
if int(record['Round']) > 1: continue
if int(record['Total']) != 100: continue
if record['move'] == 'None': continue
if record['gameType'] != 'dictator': continue
move = float(record['move'])
if move < binrange[0] or \
move > binrange[1]: continue
moves.append(move)
df_dictator_human = choices_to_df(moves, 'Human')
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
df_dictator_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [25, 35, 70, 30, 20, 25, 40, 80, 30, 30, 40, 30, 30, 30, 30, 30, 40, 40, 30, 30, 40, 30, 60, 20, 40, 25, 30, 30, 30]
df_dictator_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
def extract_choices(recrods):
choices = [extract_amout(
messages[-1]['content'],
prefix='$',
print_except=True,
type=float) for messages in records['messages']
]
choices = [x for x in choices if x is not None]
# print(choices)
return choices
def extract_amout(
message,
prefix='',
print_except=True,
type=float,
brackets='[]'
):
try:
matches = extract_brackets(message, brackets=brackets)
matches = [s[len(prefix):] \
if s.startswith(prefix) \
else s for s in matches]
invalid = False
if len(matches) == 0:
invalid = True
for i in range(len(matches)):
if matches[i] != matches[0]:
invalid = True
if invalid:
raise ValueError('Invalid answer: %s' % message)
return type(matches[0])
except Exception as e:
if print_except: print(e)
return None
records = json.load(open('dictator_wo_ex_2023_03_13-11_24_07_PM.json', 'r'))
choices = extract_choices(records)
# Plot 1 - Dictator (altruism)
def plot_facet(
df_list,
x='choices',
hue='hue',
palette=None,
binrange=None,
bins=10,
# binwidth=10,
stat='count',
x_label='',
sharex=True,
sharey=False,
subplot=sns.histplot,
xticks_locs=None,
# kde=False,
**kwargs
):
data = pd.concat(df_list)
if binrange is None:
binrange = (data[x].min(), data[x].max())
g = sns.FacetGrid(
data, row=hue, hue=hue,
palette=palette,
aspect=2, height=2,
sharex=sharex, sharey=sharey,
despine=True,
)
g.map_dataframe(
subplot,
x=x,
# kde=kde,
binrange=binrange,
bins=bins,
stat=stat,
**kwargs
)
# g.add_legend(title='hue')
g.set_axis_labels(x_label, stat.title())
g.set_titles(row_template="{row_name}")
for ax in g.axes.flat:
ax.yaxis.set_major_formatter(
FuncFormatter(lambda y, pos: '{:.2f}'.format(y))
)
binwidth = (binrange[1] - binrange[0]) / bins
if xticks_locs is None:
locs = np.linspace(binrange[0], binrange[1], bins//2+1)
locs = [loc + binwidth for loc in locs]
else:
locs = xticks_locs
labels = [str(int(loc)) for loc in locs]
locs = [loc + 0.5*binwidth for loc in locs]
plt.xticks(locs, labels)
g.set(xlim=binrange)
return g
df = df_dictator_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_dictator_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_dictator_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 2 - - Ultimatum (Fairness)
df = pd.read_csv('ultimatum_strategy.csv')
df = df[df['gameType'] == 'ultimatum_strategy']
df = df[df['Role'] == 'player']
df = df[df['Round'] == 1]
df = df[df['Total'] == 100]
df = df[df['move'] != 'None']
df['propose'] = df['move'].apply(lambda x: eval(x)[0])
df['accept'] = df['move'].apply(lambda x: eval(x)[1])
df = df[(df['propose'] >= 0) & (df['propose'] <= 100)]
df = df[(df['accept'] >= 0) & (df['accept'] <= 100)]
df_ultimatum_1_human = choices_to_df(list(df['propose']), 'Human')
df_ultimatum_2_human = choices_to_df(list(df['accept']), 'Human')
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
df_ultimatum_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [40, 40, 40, 30, 70, 70, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 30, 30, 35, 50, 40, 70, 40, 60, 60, 70, 40, 50]
df_ultimatum_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 25.0, 50.0, 1.0, 1.0, 20.0, 50.0, 50.0, 50.0, 20.0, 50.0, 1.0, 1.0, 1.0, 50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0] + [0, 1]
df_ultimatum_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [None, 50, 50, 50, 50, 30, None, None, 30, 33.33, 40, None, 50, 40, None, 1, 30, None, 10, 50, 30, 10, 30, None, 30, None, 10, 30, 30, 30]
df_ultimatum_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [50.0, 50.0, 10.0, 40.0, 20.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 50.0, 20.0, 10.0, 50.0, 20.0, 1.0, 1.0, 50.0, 1.0, 20.0, 1.0, 50.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 50.0]
df_ultimatum_2_gpt4_female = choices_to_df(choices, hue='ChatGPT-4 Female')
choices = [1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 50.0, 50.0, 20.0, 20.0, 1.0, 50.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 50.0, 20.0, 20.0, 10.0, 50.0, 1.0, 1.0, 1.0]
df_ultimatum_2_gpt4_male = choices_to_df(choices, hue='ChatGPT-4 Male')
choices = [40.0, 1.0, 1.0, 20.0, 1.0, 20.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 1.0, 20.0, 50.0, 10.0, 50.0, 1.0, 1.0, 20.0, 1.0, 50.0, 20.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 40.0]
df_ultimatum_2_gpt4_US = choices_to_df(choices, hue='ChatGPT-4 US')
choices = [1.0, 1.0, 20.0, 50.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 50.0, 1.0, 1.0, 1.0, 1.0]
df_ultimatum_2_gpt4_Poland = choices_to_df(choices, hue='ChatGPT-4 Poland')
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 1.0, 20.0, 50.0, 0.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0]
df_ultimatum_2_gpt4_China = choices_to_df(choices, hue='ChatGPT-4 China')
choices = [1.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 40.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 20.0, 1.0, 50.0, 1.0, 50.0, 20.0, 1.0, 1.0, 50.0]
df_ultimatum_2_gpt4_UK = choices_to_df(choices, hue='ChatGPT-4 UK')
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 10.0, 1.0, 40.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 50.0, 20.0, 20.0, 1.0, 1.0, 50.0, 20.0, 50.0, 50.0, 20.0, 1.0, 20.0, 50.0, 1]
df_ultimatum_2_gpt4_Columbia = choices_to_df(choices, hue='ChatGPT-4 Columbia')
choices = [50.0, 1.0, 50.0, 20.0, 20.0, 20.0, 50.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 50.0, 1.0, 20.0, 20.0, 50.0, 1.0, 50.0, 1.0, 40.0, 1.0, 20.0, 1.0, 20.0, 1.0, 1.0]
df_ultimatum_2_gpt4_under = choices_to_df(choices, hue='ChatGPT-4 Undergrad')
choices = [1.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 25.0, 20.0, 50.0, 20.0, 50.0, 50.0, 1.0, 50.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 20.0, 20.0]
df_ultimatum_2_gpt4_grad = choices_to_df(choices, hue='ChatGPT-4 Graduate')
df = df_ultimatum_1_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_1_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_1_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final2 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 3 - - Ultimatum (Responder) (spite)
df = df_ultimatum_2_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_2_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_2_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final3 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 4 - - Trust (as Investor) (trust)
binrange = (0, 100)
moves_1 = []
moves_2 = defaultdict(list)
with open('trust_investment.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
col2idx = {col: idx for idx, col in enumerate(header)}
for row in reader:
record = {col: row[idx] for col, idx in col2idx.items()}
# if record['Role'] != 'first': continue
if int(record['Round']) > 1: continue
# if int(record['Total']) != 100: continue
if record['move'] == 'None': continue
if record['gameType'] != 'trust_investment': continue
if record['Role'] == 'first':
move = float(record['move'])
if move < binrange[0] or \
move > binrange[1]: continue
moves_1.append(move)
elif record['Role'] == 'second':
inv, ret = eval(record['roundResult'])
if ret < 0 or \
ret > inv * 3: continue
moves_2[inv].append(ret)
else: continue
df_trust_1_human = choices_to_df(moves_1, 'Human')
df_trust_2_human = choices_to_df(moves_2[10], 'Human')
df_trust_3_human = choices_to_df(moves_2[50], 'Human')
df_trust_4_human = choices_to_df(moves_2[100], 'Human')
choices = [50.0, 50.0, 40.0, 30.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0, 50.0, 30.0, 30.0, 50.0, 50.0, 50.0, 40.0, 40.0, 50.0, 50.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0]
df_trust_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [50.0, 50.0, 30.0, 30.0, 30.0, 60.0, 50.0, 40.0, 20.0, 20.0, 50.0, 40.0, 30.0, 20.0, 30.0, 20.0, 30.0, 60.0, 50.0, 30.0, 50.0, 20.0, 20.0, 30.0, 50.0, 30.0, 30.0, 50.0, 40.0] + [30]
df_trust_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 20.0, 15.0, 15.0, 15.0, 15.0, 15.0, 20.0, 20.0, 15.0]
df_trust_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 25.0, 30.0, 30.0, 20.0, 25.0, 30.0, 20.0, 20.0, 18.0] + [20, 20, 20, 25, 25, 25, 30]
df_trust_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [100.0, 75.0, 75.0, 75.0, 75.0, 75.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0, 75.0, 75.0, 100.0, 100.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0]
df_trust_3_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [150.0, 100.0, 150.0, 150.0, 50.0, 150.0, 100.0, 150.0, 100.0, 100.0, 100.0, 150.0] + [100, 100, 100, 100, 100, 100, 100, 100]
df_trust_3_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0]
df_trust_4_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [225.0, 225.0, 300.0, 300.0, 220.0, 300.0, 250.0] + [200, 200, 250, 200, 200]
df_trust_4_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
df = df_trust_1_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_1_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_1_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final4 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 5 - Trust (as Banker) (fairness, altruism, reciprocity)
df = df_trust_3_human
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
custom_ticks = [2, 6, 10, 14, 18]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
y='density:Q',
color=alt.value('steelblue')
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_3_gpt4
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
y='density:Q',
color=alt.value('orange')
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_3_turbo
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=10)),
y='density:Q',
color=alt.value('green')
).properties(
width=500,
title='Density of Choices'
).interactive()
# chart1
final5 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 6 - Public Goods (Free-Riding, altruism, cooperation)
df = pd.read_csv('public_goods_linear_water.csv')
df = df[df['Role'] == 'contributor']
df = df[df['Round'] <= 3]
df = df[df['Total'] == 20]
df = df[df['groupSize'] == 4]
df = df[df['move'] != None]
df = df[(df['move'] >= 0) & (df['move'] <= 20)]
df = df[df['gameType'] == 'public_goods_linear_water']
round_1 = df[df['Round'] == 1]['move']
round_2 = df[df['Round'] == 2]['move']
round_3 = df[df['Round'] == 3]['move']
print(len(round_1), len(round_2), len(round_3))
df_PG_human = pd.DataFrame({
'choices': list(round_1)
})
df_PG_human['hue'] = 'Human'
# df_PG_human
file_names = [
'PG_basic_turbo_2023_05_09-02_49_09_AM.json',
'PG_basic_turbo_loss_2023_05_09-03_59_49_AM.json',
'PG_basic_gpt4_2023_05_09-11_15_42_PM.json',
'PG_basic_gpt4_loss_2023_05_09-10_44_38_PM.json',
]
choices = []
for file_name in file_names:
with open(file_name, 'r') as f:
choices += json.load(f)['choices']
choices_baseline = choices
choices = [tuple(x)[0] for x in choices]
df_PG_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
# df_PG_turbo.head()
df_PG_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
# df_PG_gpt4.head()
df = df_PG_human
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
custom_ticks = [2, 6, 10, 14, 18]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_PG_gpt4
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_PG_turbo
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=2)),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
# chart1
final6 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Final_Final
final_final = (final | final2 | final3 ) & (final4 | final5 | final6)
#Dashboard
import panel as pn
import vega_datasets
# Enable Panel extensions
pn.extension(design='bootstrap')
pn.extension('vega')
template = pn.template.BootstrapTemplate(
title='SI649 Project2',
)
# the main column will hold our key content
maincol = pn.Column()
options1 = ['ALL', 'Choose Your Own', 'Based On Category']
select0 = pn.widgets.Select(options=options1, name='Choose what to compare')
# maincol.append(select0)
# Charts
charts = []
charts.append(final)
charts.append(final2)
charts.append(final3)
charts.append(final4)
charts.append(final5)
charts.append(final6)
# Define options for dropdown
options = [f'Chart {i+1}' for i in range(len(charts))]
# Panel widgets
select1 = pn.widgets.Select(options=options, name='Select Chart 1')
select2 = pn.widgets.Select(options=options, name='Select Chart 2')
options = ['Altruism', 'Fairness', 'spite', 'trust', 'reciprocity', 'free-riding', 'cooperation']
select_widget = pn.widgets.Select(options=options, name='Select a category')
# Define function to update chart
def update_chart(value):
if value:
index = int(value.split()[-1]) - 1
return charts[index]
else:
return None
# Combine dropdown and chart
@pn.depends(select1.param.value, select2.param.value)
def update_plots(value1, value2):
selected_chart1 = update_chart(value1)
selected_chart2 = update_chart(value2)
if selected_chart1 and selected_chart2:
return pn.Row(selected_chart1, selected_chart2)
elif selected_chart1:
return selected_chart1
elif selected_chart2:
return selected_chart2
else:
return None
# Define functions for each category
def update_plots_altruism():
return pn.Row(final, final5)
def update_plots_fairness():
return pn.Row(final2, final5)
def update_plots_spite():
return final
def update_plots_trust():
return final4
def update_plots_reciprocity():
return final5
def update_plots_freeriding():
return final6
def update_plots_cooperation():
return final6
# Define a dictionary to map categories to update functions
update_functions = {
'Altruism': update_plots_altruism,
'Fairness': update_plots_fairness,
'spite': update_plots_spite,
'trust': update_plots_trust,
'reciprocity': update_plots_reciprocity,
'freeriding': update_plots_freeriding,
'cooperation': update_plots_cooperation
}
# # Define function to update chart based on selected category
# def update_plots_category(event):
# selected_category = event.new
# maincol.clear() # Clear existing content in main column
# if selected_category in update_functions:
# update_function = update_functions[selected_category]
# maincol.append(update_function())
# else:
# maincol.append(pn.pane.Markdown(f"No update function found for category: {selected_category}"))
# Define function to update chart based on selected category
def update_plots_category(event):
selected_category = event.new
maincol.clear() # Clear existing content in main column
if selected_category in update_functions:
update_function = update_functions[selected_category]
maincol.append(update_function())
else:
maincol.append(pn.pane.Markdown(f"No update function found for category: {selected_category}"))
# Append select_widget again to allow changing the category selection
maincol.append(select_widget)
# Callback function to handle select widget events
def select_callback(event):
selected_value = event.new
maincol.clear() # Clear existing content in main column
if selected_value == 'Choose Your Own':
maincol.append(select1)
maincol.append(select2)
maincol.append(update_plots)
elif selected_value == 'Based On Category':
maincol.append(select_widget)
select_widget.param.watch(update_plots_category, 'value')
# # Bind the update_plots_category function to the select widget's 'value' parameter
# select.param.watch
# maincol.append(update_plots_category())
# Bind the callback function to the select widget's 'value' parameter
select0.param.watch(select_callback, 'value')
maincol.append(select0)
template.main.append(maincol)
template.servable() |