JoyHallo / joyhallo /datasets /image_processor.py
shisheng7
update home
bd6c4af
raw
history blame
13.6 kB
"""
This module is responsible for processing images, particularly for face-related tasks.
It uses various libraries such as OpenCV, NumPy, and InsightFace to perform tasks like
face detection, augmentation, and mask rendering. The ImageProcessor class encapsulates
the functionality for these operations.
"""
import os
from typing import List
import cv2
import mediapipe as mp
import numpy as np
import torch
from insightface.app import FaceAnalysis
from PIL import Image
from torchvision import transforms
from ..utils.util import (blur_mask, get_landmark_overframes, get_mask,
get_union_face_mask, get_union_lip_mask)
MEAN = 0.5
STD = 0.5
class ImageProcessor:
"""
ImageProcessor is a class responsible for processing images, particularly for face-related tasks.
It takes in an image and performs various operations such as augmentation, face detection,
face embedding extraction, and rendering a face mask. The processed images are then used for
further analysis or recognition purposes.
Attributes:
img_size (int): The size of the image to be processed.
face_analysis_model_path (str): The path to the face analysis model.
Methods:
preprocess(source_image_path, cache_dir):
Preprocesses the input image by performing augmentation, face detection,
face embedding extraction, and rendering a face mask.
close():
Closes the ImageProcessor and releases any resources being used.
_augmentation(images, transform, state=None):
Applies image augmentation to the input images using the given transform and state.
__enter__():
Enters a runtime context and returns the ImageProcessor object.
__exit__(_exc_type, _exc_val, _exc_tb):
Exits a runtime context and handles any exceptions that occurred during the processing.
"""
def __init__(self, img_size, face_analysis_model_path) -> None:
self.img_size = img_size
self.pixel_transform = transforms.Compose(
[
transforms.Resize(self.img_size),
transforms.ToTensor(),
transforms.Normalize([MEAN], [STD]),
]
)
self.cond_transform = transforms.Compose(
[
transforms.Resize(self.img_size),
transforms.ToTensor(),
]
)
self.attn_transform_64 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 8, self.img_size[0] // 8)),
transforms.ToTensor(),
]
)
self.attn_transform_32 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 16, self.img_size[0] // 16)),
transforms.ToTensor(),
]
)
self.attn_transform_16 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 32, self.img_size[0] // 32)),
transforms.ToTensor(),
]
)
self.attn_transform_8 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 64, self.img_size[0] // 64)),
transforms.ToTensor(),
]
)
self.face_analysis = FaceAnalysis(
name="",
root=face_analysis_model_path,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
def preprocess(self, source_image_path: str, cache_dir: str, face_region_ratio: float):
"""
Apply preprocessing to the source image to prepare for face analysis.
Parameters:
source_image_path (str): The path to the source image.
cache_dir (str): The directory to cache intermediate results.
Returns:
None
"""
source_image = Image.open(source_image_path)
ref_image_pil = source_image.convert("RGB")
# 1. image augmentation
pixel_values_ref_img = self._augmentation(ref_image_pil, self.pixel_transform)
# 2.1 detect face
faces = self.face_analysis.get(cv2.cvtColor(np.array(ref_image_pil.copy()), cv2.COLOR_RGB2BGR))
if not faces:
print("No faces detected in the image. Using the entire image as the face region.")
# Use the entire image as the face region
face = {
"bbox": [0, 0, ref_image_pil.width, ref_image_pil.height],
"embedding": np.zeros(512)
}
else:
# Sort faces by size and select the largest one
faces_sorted = sorted(faces, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]), reverse=True)
face = faces_sorted[0] # Select the largest face
# 2.2 face embedding
face_emb = face["embedding"]
# 2.3 render face mask
get_mask(source_image_path, cache_dir, face_region_ratio)
file_name = os.path.basename(source_image_path).split(".")[0]
face_mask_pil = Image.open(
os.path.join(cache_dir, f"{file_name}_face_mask.png")).convert("RGB")
face_mask = self._augmentation(face_mask_pil, self.cond_transform)
# 2.4 detect and expand lip, face mask
sep_background_mask = Image.open(
os.path.join(cache_dir, f"{file_name}_sep_background.png"))
sep_face_mask = Image.open(
os.path.join(cache_dir, f"{file_name}_sep_face.png"))
sep_lip_mask = Image.open(
os.path.join(cache_dir, f"{file_name}_sep_lip.png"))
pixel_values_face_mask = [
self._augmentation(sep_face_mask, self.attn_transform_64),
self._augmentation(sep_face_mask, self.attn_transform_32),
self._augmentation(sep_face_mask, self.attn_transform_16),
self._augmentation(sep_face_mask, self.attn_transform_8),
]
pixel_values_lip_mask = [
self._augmentation(sep_lip_mask, self.attn_transform_64),
self._augmentation(sep_lip_mask, self.attn_transform_32),
self._augmentation(sep_lip_mask, self.attn_transform_16),
self._augmentation(sep_lip_mask, self.attn_transform_8),
]
pixel_values_full_mask = [
self._augmentation(sep_background_mask, self.attn_transform_64),
self._augmentation(sep_background_mask, self.attn_transform_32),
self._augmentation(sep_background_mask, self.attn_transform_16),
self._augmentation(sep_background_mask, self.attn_transform_8),
]
pixel_values_full_mask = [mask.view(1, -1)
for mask in pixel_values_full_mask]
pixel_values_face_mask = [mask.view(1, -1)
for mask in pixel_values_face_mask]
pixel_values_lip_mask = [mask.view(1, -1)
for mask in pixel_values_lip_mask]
return pixel_values_ref_img, face_mask, face_emb, pixel_values_full_mask, pixel_values_face_mask, pixel_values_lip_mask
def close(self):
"""
Closes the ImageProcessor and releases any resources held by the FaceAnalysis instance.
Args:
self: The ImageProcessor instance.
Returns:
None.
"""
for _, model in self.face_analysis.models.items():
if hasattr(model, "Dispose"):
model.Dispose()
def _augmentation(self, images, transform, state=None):
if state is not None:
torch.set_rng_state(state)
if isinstance(images, List):
transformed_images = [transform(img) for img in images]
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
else:
ret_tensor = transform(images) # (c, h, w)
return ret_tensor
def __enter__(self):
return self
def __exit__(self, _exc_type, _exc_val, _exc_tb):
self.close()
class ImageProcessorForDataProcessing():
"""
ImageProcessor is a class responsible for processing images, particularly for face-related tasks.
It takes in an image and performs various operations such as augmentation, face detection,
face embedding extraction, and rendering a face mask. The processed images are then used for
further analysis or recognition purposes.
Attributes:
img_size (int): The size of the image to be processed.
face_analysis_model_path (str): The path to the face analysis model.
Methods:
preprocess(source_image_path, cache_dir):
Preprocesses the input image by performing augmentation, face detection,
face embedding extraction, and rendering a face mask.
close():
Closes the ImageProcessor and releases any resources being used.
_augmentation(images, transform, state=None):
Applies image augmentation to the input images using the given transform and state.
__enter__():
Enters a runtime context and returns the ImageProcessor object.
__exit__(_exc_type, _exc_val, _exc_tb):
Exits a runtime context and handles any exceptions that occurred during the processing.
"""
def __init__(self, face_analysis_model_path, landmark_model_path, step) -> None:
if step == 2:
self.face_analysis = FaceAnalysis(
name="",
root=face_analysis_model_path,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
self.landmarker = None
else:
BaseOptions = mp.tasks.BaseOptions
FaceLandmarker = mp.tasks.vision.FaceLandmarker
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode
# Create a face landmarker instance with the video mode:
options = FaceLandmarkerOptions(
base_options=BaseOptions(model_asset_path=landmark_model_path),
running_mode=VisionRunningMode.IMAGE,
)
self.landmarker = FaceLandmarker.create_from_options(options)
self.face_analysis = None
def preprocess(self, source_image_path: str):
"""
Apply preprocessing to the source image to prepare for face analysis.
Parameters:
source_image_path (str): The path to the source image.
cache_dir (str): The directory to cache intermediate results.
Returns:
None
"""
# 1. get face embdeding
face_mask, face_emb, sep_pose_mask, sep_face_mask, sep_lip_mask = None, None, None, None, None
if self.face_analysis:
for frame in sorted(os.listdir(source_image_path)):
try:
source_image = Image.open(
os.path.join(source_image_path, frame))
ref_image_pil = source_image.convert("RGB")
# 2.1 detect face
faces = self.face_analysis.get(cv2.cvtColor(
np.array(ref_image_pil.copy()), cv2.COLOR_RGB2BGR))
# use max size face
face = sorted(faces, key=lambda x: (
x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))[-1]
# 2.2 face embedding
face_emb = face["embedding"]
if face_emb is not None:
break
except Exception as _:
continue
if self.landmarker:
# 3.1 get landmark
landmarks, height, width = get_landmark_overframes(
self.landmarker, source_image_path)
assert len(landmarks) == len(os.listdir(source_image_path))
# 3 render face and lip mask
face_mask = get_union_face_mask(landmarks, height, width)
lip_mask = get_union_lip_mask(landmarks, height, width)
# 4 gaussian blur
blur_face_mask = blur_mask(face_mask, (64, 64), (51, 51))
blur_lip_mask = blur_mask(lip_mask, (64, 64), (31, 31))
# 5 seperate mask
sep_face_mask = cv2.subtract(blur_face_mask, blur_lip_mask)
sep_pose_mask = 255.0 - blur_face_mask
sep_lip_mask = blur_lip_mask
return face_mask, face_emb, sep_pose_mask, sep_face_mask, sep_lip_mask
def close(self):
"""
Closes the ImageProcessor and releases any resources held by the FaceAnalysis instance.
Args:
self: The ImageProcessor instance.
Returns:
None.
"""
for _, model in self.face_analysis.models.items():
if hasattr(model, "Dispose"):
model.Dispose()
def _augmentation(self, images, transform, state=None):
if state is not None:
torch.set_rng_state(state)
if isinstance(images, List):
transformed_images = [transform(img) for img in images]
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
else:
ret_tensor = transform(images) # (c, h, w)
return ret_tensor
def __enter__(self):
return self
def __exit__(self, _exc_type, _exc_val, _exc_tb):
self.close()