BleachNick's picture
upload required packages
87d40d2

A newer version of the Gradio SDK is available: 5.10.0

Upgrade

DeepFloyd IF

Overview

DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding. The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules:

  • Stage 1: a base model that generates 64x64 px image based on text prompt,
  • Stage 2: a 64x64 px => 256x256 px super-resolution model, and
  • Stage 3: a 256x256 px => 1024x1024 px super-resolution model Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet architecture enhanced with cross-attention and attention pooling. Stage 3 is Stability AI's x4 Upscaling model. The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset. Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.

Usage

Before you can use IF, you need to accept its usage conditions. To do so:

  1. Make sure to have a Hugging Face account and be logged in.
  2. Accept the license on the model card of DeepFloyd/IF-I-XL-v1.0. Accepting the license on the stage I model card will auto accept for the other IF models.
  3. Make sure to login locally. Install huggingface_hub:
pip install huggingface_hub --upgrade

run the login function in a Python shell:

from huggingface_hub import login

login()

and enter your Hugging Face Hub access token.

Next we install diffusers and dependencies:

pip install -q diffusers accelerate transformers

The following sections give more in-detail examples of how to use IF. Specifically:

Available checkpoints

Google Colab Open In Colab

Text-to-Image Generation

By default diffusers makes use of model cpu offloading to run the whole IF pipeline with as little as 14 GB of VRAM.

from diffusers import DiffusionPipeline
from diffusers.utils import pt_to_pil, make_image_grid
import torch

# stage 1
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
stage_1_output = stage_1(
    prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt"
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# stage 2
stage_2_output = stage_2(
    image=stage_1_output,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")

# stage 3
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, noise_level=100, generator=generator).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=3)

Text Guided Image-to-Image Generation

The same IF model weights can be used for text-guided image-to-image translation or image variation. In this case just make sure to load the weights using the [IFImg2ImgPipeline] and [IFImg2ImgSuperResolutionPipeline] pipelines.

Note: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines without loading them twice by making use of the [~DiffusionPipeline.components] argument as explained here.

from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil, load_image, make_image_grid
import torch

# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)
original_image = original_image.resize((768, 512))

# stage 1
stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = IFImg2ImgSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = "A fantasy landscape in style minecraft"
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
stage_1_output = stage_1(
    image=original_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# stage 2
stage_2_output = stage_2(
    image=stage_1_output,
    original_image=original_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")

# stage 3
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=4)

Text Guided Inpainting Generation

The same IF model weights can be used for text-guided image-to-image translation or image variation. In this case just make sure to load the weights using the [IFInpaintingPipeline] and [IFInpaintingSuperResolutionPipeline] pipelines.

Note: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines without loading them twice by making use of the [~DiffusionPipeline.components()] function as explained here.

from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil, load_image, make_image_grid
import torch

# download image
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"
original_image = load_image(url)

# download mask
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
mask_image = load_image(url)

# stage 1
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = IFInpaintingSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = "blue sunglasses"
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
stage_1_output = stage_1(
    image=original_image,
    mask_image=mask_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# stage 2
stage_2_output = stage_2(
    image=stage_1_output,
    original_image=original_image,
    mask_image=mask_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_II.png")

# stage 3
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, mask_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=5)

Converting between different pipelines

In addition to being loaded with from_pretrained, Pipelines can also be loaded directly from each other.

from diffusers import IFPipeline, IFSuperResolutionPipeline

pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
pipe_2 = IFSuperResolutionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0")


from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline

pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)


from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline

pipe_1 = IFInpaintingPipeline(**pipe_1.components)
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)

Optimizing for speed

The simplest optimization to run IF faster is to move all model components to the GPU.

pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")

You can also run the diffusion process for a shorter number of timesteps.

This can either be done with the num_inference_steps argument:

pipe("<prompt>", num_inference_steps=30)

Or with the timesteps argument:

from diffusers.pipelines.deepfloyd_if import fast27_timesteps

pipe("<prompt>", timesteps=fast27_timesteps)

When doing image variation or inpainting, you can also decrease the number of timesteps with the strength argument. The strength argument is the amount of noise to add to the input image which also determines how many steps to run in the denoising process. A smaller number will vary the image less but run faster.

pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")

image = pipe(image=image, prompt="<prompt>", strength=0.3).images

You can also use torch.compile. Note that we have not exhaustively tested torch.compile with IF and it might not give expected results.

from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")

pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

Optimizing for memory

When optimizing for GPU memory, we can use the standard diffusers CPU offloading APIs.

Either the model based CPU offloading,

pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()

or the more aggressive layer based CPU offloading.

pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_sequential_cpu_offload()

Additionally, T5 can be loaded in 8bit precision

from transformers import T5EncoderModel

text_encoder = T5EncoderModel.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)

from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0",
    text_encoder=text_encoder,  # pass the previously instantiated 8bit text encoder
    unet=None,
    device_map="auto",
)

prompt_embeds, negative_embeds = pipe.encode_prompt("<prompt>")

For CPU RAM constrained machines like Google Colab free tier where we can't load all model components to the CPU at once, we can manually only load the pipeline with the text encoder or UNet when the respective model components are needed.

from diffusers import IFPipeline, IFSuperResolutionPipeline
import torch
import gc
from transformers import T5EncoderModel
from diffusers.utils import pt_to_pil, make_image_grid

text_encoder = T5EncoderModel.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)

# text to image
pipe = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0",
    text_encoder=text_encoder,  # pass the previously instantiated 8bit text encoder
    unet=None,
    device_map="auto",
)

prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)

# Remove the pipeline so we can re-load the pipeline with the unet
del text_encoder
del pipe
gc.collect()
torch.cuda.empty_cache()

pipe = IFPipeline.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)

generator = torch.Generator().manual_seed(0)
stage_1_output = pipe(
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    output_type="pt",
    generator=generator,
).images

#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# Remove the pipeline so we can load the super-resolution pipeline
del pipe
gc.collect()
torch.cuda.empty_cache()

# First super resolution

pipe = IFSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)

generator = torch.Generator().manual_seed(0)
stage_2_output = pipe(
    image=stage_1_output,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    output_type="pt",
    generator=generator,
).images

#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0]], rows=1, rows=2)

Available Pipelines:

Pipeline Tasks Colab
pipeline_if.py Text-to-Image Generation -
pipeline_if_superresolution.py Text-to-Image Generation -
pipeline_if_img2img.py Image-to-Image Generation -
pipeline_if_img2img_superresolution.py Image-to-Image Generation -
pipeline_if_inpainting.py Image-to-Image Generation -
pipeline_if_inpainting_superresolution.py Image-to-Image Generation -

IFPipeline

[[autodoc]] IFPipeline - all - call

IFSuperResolutionPipeline

[[autodoc]] IFSuperResolutionPipeline - all - call

IFImg2ImgPipeline

[[autodoc]] IFImg2ImgPipeline - all - call

IFImg2ImgSuperResolutionPipeline

[[autodoc]] IFImg2ImgSuperResolutionPipeline - all - call

IFInpaintingPipeline

[[autodoc]] IFInpaintingPipeline - all - call

IFInpaintingSuperResolutionPipeline

[[autodoc]] IFInpaintingSuperResolutionPipeline - all - call