File size: 21,974 Bytes
947767a
 
 
 
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
ff53d73
 
947767a
 
 
 
 
 
 
 
 
ff53d73
 
 
 
 
 
 
5901356
ff53d73
b2bb484
7cb0f3c
947767a
5901356
947767a
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
 
 
 
 
947767a
5901356
 
 
 
 
947767a
 
 
 
5901356
 
 
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
 
 
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
 
 
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
947767a
5901356
947767a
5901356
 
 
947767a
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe630d
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe630d
 
947767a
 
 
0fe630d
 
947767a
 
 
 
 
 
801cdff
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901356
 
 
 
 
 
947767a
 
 
 
5901356
 
 
 
 
 
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff53d73
947767a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import spaces
import os
import gradio as gr
from time import sleep
from signal import SIGTERM
from psutil import process_iter
from settings import GRAND3D_Settings
from utils import list_dirs
import open3d as o3d
from copy import deepcopy
import numpy as np
import re
from bs4 import BeautifulSoup
import trimesh.transformations as tf

import logging


# The following line sets the root logger level as well.
# It's equivalent to both previous statements combined:
logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

from session import Session
from model import load_model_and_dataloader, get_model_response

# Load model and tokenizer once at the start
model_path = "checkpoints/merged_weights_grounded_obj_ref"
model_base = None
load_8bit = False
load_4bit = False
load_bf16 = True
scene_to_obj_mapping = "data/predicted_scene_data_update_5.json"
# scene_to_obj_mapping = "data/scanrefer_ground_truth_scene_graph.json"
max_new_tokens = 5000
obj_context_feature_type = "text"


tokenizer, model, data_loader = load_model_and_dataloader(
    model_path=model_path,
    model_base=model_base,
    load_8bit=load_8bit,
    load_4bit=load_4bit,
    load_bf16=load_bf16,
    scene_to_obj_mapping=scene_to_obj_mapping,
    device_map="cpu",
)  # Huggingface Zero-GPU has to use .to(device) to set the device, otherwise it will fail

model.to("cuda")  # Huggingface Zero-GPU requires explicit device placement


def get_chatbot_response(user_chat_input, scene_id):
    # Get the response from the model
    prompt, response = get_model_response(
        model=model,
        tokenizer=tokenizer,
        data_loader=data_loader,
        scene_id=scene_id,
        user_input=user_chat_input,
        max_new_tokens=max_new_tokens,
        temperature=0.2,
        top_p=0.9,
    )
    return scene_id, prompt, response


# def get_chatbot_response(user_chat_input):
#     # Get the response from the chatbot
#     scene_id = "scene0643_00"
#     scene_graph = """
#     Object-centric context: <obj_0>: {'category': 'door', 'centroid': '[0.35, 1.99, 1.11]', 'extent': '[0.68, 0.65, 2.11]'}; <obj_1>: {'category': 'ceiling', 'centroid': '[1.04, -1.39, 2.68]', 'extent': '[0.18, 0.90, 0.05]'}; <obj_2>: {'category': 'ceiling', 'centroid': '[0.77, 2.09, 2.65]', 'extent': '[0.94, 0.86, 0.11]'}; <obj_3>: {'category': 'trash can', 'centroid': '[-0.61, -2.16, 0.21]', 'extent': '[0.42, 0.36, 0.41]'}; <obj_4>: {'category': 'chair', 'centroid': '[0.35, -1.35, 0.50]', 'extent': '[0.46, 0.47, 0.94]'}; <obj_5>: {'category': 'trash can', 'centroid': '[-0.22, -2.13, 0.24]', 'extent': '[0.40, 0.28, 0.39]'}; <obj_6>: {'category': 'cabinet', 'centroid': '[-1.24, 0.00, 0.58]', 'extent': '[0.61, 0.57, 0.79]'}; <obj_7>: {'category': 'cup', 'centroid': '[0.62, 0.23, 0.77]', 'extent': '[0.14, 0.14, 0.08]'}; <obj_8>: {'category': 'window', 'centroid': '[-0.35, -2.87, 1.13]', 'extent': '[2.05, 0.60, 1.07]'}; <obj_9>: {'category': 'file cabinet', 'centroid': '[0.40, -1.97, 0.39]', 'extent': '[0.40, 0.66, 0.73]'}; <obj_10>: {'category': 'monitor', 'centroid': '[0.92, -1.51, 0.97]', 'extent': '[0.25, 0.57, 0.47]'}; <obj_11>: {'category': 'chair', 'centroid': '[0.34, 0.59, 0.43]', 'extent': '[0.65, 0.64, 0.94]'}; <obj_12>: {'category': 'desk', 'centroid': '[0.64, 0.75, 0.57]', 'extent': '[0.76, 1.60, 0.82]'}; <obj_13>: {'category': 'chair', 'centroid': '[0.55, -0.33, 0.48]', 'extent': '[0.60, 0.60, 0.87]'}; <obj_14>: {'category': 'office chair', 'centroid': '[-0.28, 1.56, 0.46]', 'extent': '[0.67, 0.55, 1.02]'}; <obj_15>: {'category': 'office chair', 'centroid': '[-0.86, -1.53, 0.43]', 'extent': '[0.54, 0.64, 0.97]'}; <obj_16>: {'category': 'chair', 'centroid': '[-0.28, 1.56, 0.46]', 'extent': '[0.67, 0.55, 1.02]'}; <obj_17>: {'category': 'monitor', 'centroid': '[0.98, 0.56, 1.05]', 'extent': '[0.21, 0.60, 0.54]'}; <obj_18>: {'category': 'doorframe', 'centroid': '[-0.17, 2.42, 1.01]', 'extent': '[0.16, 0.18, 1.70]'}; <obj_19>: {'category': 'chair', 'centroid': '[-0.86, -1.53, 0.43]', 'extent': '[0.54, 0.64, 0.97]'}; <obj_20>: {'category': 'bookshelf', 'centroid': '[0.93, 2.00, 1.34]', 'extent': '[0.73, 0.99, 2.60]'}; <obj_21>: {'category': 'office chair', 'centroid': '[0.35, -1.35, 0.50]', 'extent': '[0.46, 0.47, 0.94]'}; <obj_22>: {'category': 'desk', 'centroid': '[-1.23, 1.60, 0.70]', 'extent': '[0.80, 2.01, 0.51]'}; <obj_23>: {'category': 'book', 'centroid': '[0.91, 1.31, 0.89]', 'extent': '[0.34, 0.32, 0.30]'}; <obj_24>: {'category': 'desk', 'centroid': '[-1.24, -1.12, 0.54]', 'extent': '[0.79, 1.88, 0.85]'}; <obj_25>: {'category': 'desk', 'centroid': '[0.63, -1.51, 0.53]', 'extent': '[0.81, 1.97, 0.85]'}; <obj_26>: {'category': 'calendar', 'centroid': '[-1.72, -0.44, 1.40]', 'extent': '[0.07, 0.88, 0.83]'}; <obj_27>: {'category': 'office chair', 'centroid': '[0.34, 0.59, 0.43]', 'extent': '[0.65, 0.64, 0.94]'}; <obj_28>: {'category': 'file cabinet', 'centroid': '[-1.02, -0.76, 0.47]', 'extent': '[0.58, 0.75, 0.81]'}; <obj_29>: {'category': 'cup', 'centroid': '[-1.26, -1.65, 0.78]', 'extent': '[0.10, 0.12, 0.04]'}; <obj_30>: {'category': 'keyboard', 'centroid': '[0.55, 0.84, 0.73]', 'extent': '[0.22, 0.15, 0.03]'}
#     """
#     response = """
#     <detailed_grounding>a <p>brown wooden office desk</p>[<obj_12>] on the left to the <p>gray shelf</p>[<obj_20>].</detailed_grounding> <refer_expression_grounding>These sentences refer to <p>the brown wooden office desk</p>[<obj_12>].</refer_expression_grounding>
#     """
#     return scene_id, scene_graph, response


# Resetting to blank
def reset_textbox():
    return gr.update(value="")


# to set a component as visible=False
def set_visible_false():
    return gr.update(visible=False)


# to set a component as visible=True
def set_visible_true():
    return gr.update(visible=True)


def change_scene_or_system_prompt(dropdown_scene_selection: str):
    # reset model_3d, chatbot_for_display, chat_counter, server_status_code
    new_session_state = Session.create_for_scene(dropdown_scene_selection)
    file_name = f"{dropdown_scene_selection}.obj"
    print(os.path.join(GRAND3D_Settings.data_path, dropdown_scene_selection, file_name))
    return (
        new_session_state,
        os.path.join(GRAND3D_Settings.data_path, dropdown_scene_selection, file_name),
        None,
        new_session_state.chat_history_for_display,
    )


def cylinder_frame(p0, p1):
    """Calculate the transformation matrix to position a unit cylinder between two points."""
    direction = np.asarray(p1) - np.asarray(p0)
    length = np.linalg.norm(direction)
    direction /= length
    # Computing rotation matrix using Rodrigues' formula
    rot_axis = np.cross([0, 0, 1], direction)
    rot_angle = np.arccos(np.dot([0, 0, 1], direction))
    rot_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(rot_axis * rot_angle)

    # Translation
    translation = (np.asarray(p0) + np.asarray(p1)) / 2

    transformation = np.eye(4)
    transformation[:3, :3] = rot_matrix
    transformation[:3, 3] = translation
    scaling = np.eye(4)
    scaling[2, 2] = length
    transformation = np.matmul(transformation, scaling)
    return transformation


def create_cylinder_mesh(p0, p1, color, radius=0.04, resolution=20, split=1):
    """Create a colored cylinder mesh between two points p0 and p1."""
    cylinder = o3d.geometry.TriangleMesh.create_cylinder(
        radius=radius, height=1, resolution=resolution, split=split
    )
    transformation = cylinder_frame(p0, p1)
    cylinder.transform(transformation)
    # Apply color
    cylinder.paint_uniform_color(color)
    return cylinder


def prettify_mesh_for_gradio(mesh):
    # Define the transformation matrix
    T = np.array([[0, -1, 0, 0], [0, 0, 1, 0], [-1, 0, 0, 0], [0, 0, 0, 1]])

    # Apply the transformation
    mesh.transform(T)

    mesh.scale(10.0, center=mesh.get_center())

    bright_factor = 1  # Adjust this factor to get the desired brightness
    mesh.vertex_colors = o3d.utility.Vector3dVector(
        np.clip(np.asarray(mesh.vertex_colors) * bright_factor, 0, 1)
    )

    return mesh


def create_bbox(center, extents, color=[1, 0, 0], radius=0.02):
    """Create a colored bounding box with given center, extents, and line thickness."""
    # ... [The same code as before to define corners and lines] ...
    print(extents)
    print(type(extents))
    extents = extents.replace("[", "").replace("]", "")
    center = center.replace("[", "").replace("]", "")
    extents = [float(x.strip()) for x in extents.split(",")]
    center = [float(x.strip()) for x in center.split(",")]
    angle = -np.pi / 2  # 90 degrees
    axis = [1, 0, 0]  # Rotate around x-axis
    R = tf.rotation_matrix(angle, axis)
    center_homogeneous = np.append(center, 1)
    extents_homogeneous = np.append(extents, 1)

    # Apply the rotation to the center and extents
    rotated_center = np.dot(R, center_homogeneous)[:3]
    rotated_extents = np.dot(R, extents_homogeneous)[:3]

    sx, sy, sz = rotated_extents
    x_corners = [sx / 2, sx / 2, -sx / 2, -sx / 2, sx / 2, sx / 2, -sx / 2, -sx / 2]
    y_corners = [sy / 2, -sy / 2, -sy / 2, sy / 2, sy / 2, -sy / 2, -sy / 2, sy / 2]
    z_corners = [sz / 2, sz / 2, sz / 2, sz / 2, -sz / 2, -sz / 2, -sz / 2, -sz / 2]
    corners_3d = np.vstack([x_corners, y_corners, z_corners])
    corners_3d[0, :] = corners_3d[0, :] + float(rotated_center[0])
    corners_3d[1, :] = corners_3d[1, :] + float(rotated_center[1])
    corners_3d[2, :] = corners_3d[2, :] + float(rotated_center[2])
    corners_3d = np.transpose(corners_3d)

    lines = [
        [0, 1],
        [1, 2],
        [2, 3],
        [3, 0],
        [4, 5],
        [5, 6],
        [6, 7],
        [7, 4],
        [0, 4],
        [1, 5],
        [2, 6],
        [3, 7],
    ]
    cylinders = []
    for line in lines:
        p0, p1 = corners_3d[line[0]], corners_3d[line[1]]
        cylinders.append(create_cylinder_mesh(p0, p1, color, radius))
    return cylinders


def highlight_clusters_in_mesh(
    centroids_extents_detailed,
    centroids_extends_refer,
    mesh,
    output_dir,
    output_file_name="highlighted_mesh.obj",
):
    print("*" * 50)
    # Visualize the highlighted points by drawing 3D bounding boxes overlay on a mesh
    old_mesh = deepcopy(mesh)
    output_path = os.path.join(output_dir, "mesh_vis")
    if not os.path.exists(output_path):
        os.makedirs(output_path)

    # Create a combined mesh to hold both the original and the bounding boxes
    combined_mesh = o3d.geometry.TriangleMesh()
    combined_mesh += old_mesh

    # Draw bounding boxes for each centroid and extent
    for center, extent in centroids_extents_detailed:
        print("center: ", center)
        print("extent: ", extent)
        bbox = create_bbox(
            center, extent, color=[1, 1, 0]
        )  # yellow color for all boxes
        for b in bbox:
            combined_mesh += b

    for center, extent in centroids_extends_refer:
        bbox = create_bbox(center, extent, color=[0, 1, 0])
        for b in bbox:
            combined_mesh += b

    # Save the combined mesh
    output_file_path = os.path.join(output_path, output_file_name)
    o3d.io.write_triangle_mesh(
        output_file_path, combined_mesh, write_vertex_colors=True
    )
    print("*" * 50)
    return output_file_path


def extract_objects(text):
    return re.findall(r"<obj_\d+>", text)


# Parse the scene graph into a dictionary
def parse_scene_graph(scene_graph):
    scene_dict = {}
    matches = re.findall(r"<obj_(\d+)>: (\{.*?\})", scene_graph)
    for match in matches:
        obj_id = f"<obj_{match[0]}>"
        obj_data = eval(match[1])
        scene_dict[obj_id] = obj_data
    return scene_dict


def get_centroids_extents(obj_list, scene_dict):
    centroids_extents = []
    for obj in obj_list:
        if obj in scene_dict:
            centroid = scene_dict[obj]["centroid"]
            extent = scene_dict[obj]["extent"]
            centroids_extents.append((centroid, extent))
    return centroids_extents


@spaces.GPU
def language_model_forward(
    session_state, user_chat_input, top_p, temperature, dropdown_scene
):
    session_state = Session.create_for_scene(dropdown_scene)
    session_state.chat_history_for_display.append(
        (user_chat_input, None)
    )  # append in a tuple format, first is user input, second is assistant response

    yield session_state, None, session_state.chat_history_for_display

    # Load in a 3D model
    file_name = f"{session_state.scene}.obj"
    original_model_path = os.path.join(
        GRAND3D_Settings.data_path, session_state.scene, file_name
    )
    print("original_model_path: ", original_model_path)

    # Load the GLB mesh
    mesh = o3d.io.read_triangle_mesh(original_model_path)

    # get chatbot response
    scene_id, scene_graph, response = get_chatbot_response(
        user_chat_input, session_state.scene
    )

    assert scene_id == session_state.scene  # Ensure the scene ID matches

    # use scene_graph and response to get centroids and extents
    # Parse the scene graph into a dictionary
    scene_dict = parse_scene_graph(scene_graph)
    print("Model Input: " + str(scene_dict))
    print("=" * 50)
    print("Model Response: " + response)

    # Parse the response to get detailed and refer expression groundings
    soup = BeautifulSoup(response, "html.parser")
    detailed_grounding_html = str(soup.find("detailed_grounding"))
    refer_expression_grounding_html = str(soup.find("refer_expression_grounding"))

    # Extract objects from both sections
    detailed_objects = extract_objects(detailed_grounding_html)
    refer_objects = extract_objects(refer_expression_grounding_html)

    # Extract objects from both sections
    print("detailed_objects: ", detailed_objects)
    print("refer_objects: ", refer_objects)

    # Perform set subtraction to get remaining objects
    remaining_objects = list(set(detailed_objects) - set(refer_objects))
    print("remaining_objects: ", remaining_objects)

    centroids_extents_detailed = get_centroids_extents(remaining_objects, scene_dict)
    print("centroids_extents_detailed: ", centroids_extents_detailed)
    centroids_extents_refer = get_centroids_extents(refer_objects, scene_dict)
    print("centroids_extents_refer: ", centroids_extents_refer)
    # Define your centroids and extents here (example data)
    # Highlight clusters in the mesh and save it
    session_output_dir = session_state.get_session_output_dir()
    highlighted_model_path = highlight_clusters_in_mesh(
        centroids_extents_detailed,
        centroids_extents_refer,
        mesh,
        session_output_dir,
        output_file_name="highlighted_model.obj",
    )

    # Update the chat history with the response
    last_turn = session_state.chat_history_for_display[
        -1
    ]  # first is user input, second is assistant response
    last_turn = (last_turn[0], response)
    session_state.chat_history_for_display[-1] = last_turn
    session_state.save()  # save the session state

    yield session_state, highlighted_model_path, session_state.chat_history_for_display


title = """<h1 align="center">πŸ πŸ’¬  3D-GRAND: Towards Better Grounding and Less Hallucination for 3D-LLMs πŸš€</h1>
<p><center>
<a href="https://3d-grand.github.io/" target="_blank">[Project Page]</a>
<a href="https://www.dropbox.com/scl/fo/5p9nb4kalnz407sbqgemg/AG1KcxeIS_SUoJ1hoLPzv84?rlkey=weunabtbiz17jitfv3f4jpmm1&dl=0" target="_blank">[3D-GRAND Data]</a>
<a href="https://www.dropbox.com/scl/fo/inemjtgqt2nkckymn65rp/AGi2KSYU9AHbnpuj7TWYihs?rlkey=ldbn36b1z6nqj74yv5ph6cqwc&dl=0" target="_blank">[3D-POPE Data]</a>
</center></p>
"""

# Modifying existing Gradio Theme
# theme = gr.themes.Soft(
#     primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.pink
# )

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    session_state = gr.State(Session.create)

    gr.HTML(title)

    with gr.Column():
        with gr.Row():
            with gr.Column(scale=5):
                dropdown_scene = gr.Dropdown(
                    choices=list_dirs(GRAND3D_Settings.data_path),
                    value=GRAND3D_Settings.default_scene,
                    interactive=True,
                    label="Select a scene",
                )
                model_3d = gr.Model3D(
                    value=os.path.join(
                        GRAND3D_Settings.data_path,
                        GRAND3D_Settings.default_scene,
                        f"{GRAND3D_Settings.default_scene}.obj",
                    ),
                    clear_color=[0.0, 0.0, 0.0, 0.0],
                    label="3D Model",
                    camera_position=(-50, 65, 6),
                    zoom_speed=10.0,
                )
                gr.HTML(
                    """<center><strong>
                    πŸ‘† SCROLL or DRAG on the 3D Model
                    to zoom in/out and rotate. Press CTRL and DRAG to pan.
                    </strong></center>
                    """
                )
                gr.HTML(
                    """<center><strong>
                    πŸ‘‡ When grounding finishes,
                    the grounding result will be displayed below.
                    </strong></center>
                    """
                )
                model_3d_grounding_result = gr.Model3D(
                    clear_color=[0.0, 0.0, 0.0, 0.0],
                    label="Grounding Result",
                    camera_position=(-50, 65, 6),
                    zoom_speed=10.0,
                )
                gr.HTML(
                    """<center><strong>
                    <div style="display:inline-block; color:green">&#9632;</div> = Predicted Target &nbsp;
                    <div style="display:inline-block; color:gold">&#9632;</div> = Grounded Chain-of-Thought &nbsp;
                    </strong></center>
                    """
                )
            with gr.Column(scale=5):
                chat_history_for_display = gr.Chatbot(
                    value=[(None, GRAND3D_Settings.INITIAL_MSG_FOR_DISPLAY)],
                    label="Chat Assistant (Powered by 3D-GRAND Model)",
                    height=510,
                    render_markdown=False,
                    sanitize_html=False,
                )
                with gr.Row():
                    with gr.Column(scale=8):
                        user_chat_input = gr.Textbox(
                            placeholder="I want to find the chair near the table",
                            show_label=False,
                        )
                    with gr.Column(scale=1, min_width=0):
                        send_button = gr.Button("Send", variant="primary")
                    with gr.Column(scale=1, min_width=0):
                        clear_button = gr.Button("Clear")
                with gr.Row():
                    with gr.Accordion(label="Examples for user message:", open=True):
                        gr.Examples(
                            examples=[
                                ["The TV on the drawer, opposing the bed."],
                                ["the desk next to the window"],
                            ],
                            inputs=user_chat_input,
                        )

        with gr.Accordion("Parameters", open=False, visible=False):
            top_p = gr.Slider(
                minimum=0,
                maximum=1.0,
                value=1.0,
                step=0.05,
                interactive=True,
                label="Top-p (nucleus sampling)",
            )
            temperature = gr.Slider(
                minimum=0,
                maximum=5.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",
            )
    # gr.Markdown("### Terms of Service")
    # gr.HTML(
    #     """By using this service, users are required to agree to the following terms:
    #         The service is a research preview intended for non-commercial use only.
    #         The service may collect user dialogue data for future research."""
    # )

    # Event handling
    dropdown_scene.change(
        fn=change_scene_or_system_prompt,
        inputs=[dropdown_scene],
        outputs=[
            session_state,
            model_3d,
            model_3d_grounding_result,
            chat_history_for_display,
        ],
    )
    clear_button.click(
        fn=change_scene_or_system_prompt,
        inputs=[dropdown_scene],
        outputs=[
            session_state,
            model_3d,
            model_3d_grounding_result,
            chat_history_for_display,
        ],
    )
    user_chat_input.submit(
        fn=language_model_forward,
        inputs=[session_state, user_chat_input, top_p, temperature, dropdown_scene],
        outputs=[session_state, model_3d_grounding_result, chat_history_for_display],
    )
    send_button.click(
        fn=language_model_forward,
        inputs=[session_state, user_chat_input, top_p, temperature, dropdown_scene],
        outputs=[session_state, model_3d_grounding_result, chat_history_for_display],
    )

    send_button.click(reset_textbox, [], [user_chat_input])
    user_chat_input.submit(reset_textbox, [], [user_chat_input])

sleep_time = 2
port = 7011
for x in range(1, 10):  # try 8 times
    try:
        # put your logic here
        gr.close_all()
        demo.queue(
            max_size=20,
        ).launch(
            # debug=True,
            # server_name="0.0.0.0",
            # server_port=port,
            share=True
        )
    except OSError:
        for proc in process_iter():
            for conns in proc.connections(kind="inet"):
                if conns.laddr.port == port:
                    proc.send_signal(SIGTERM)  # or SIGKILL
        print(f"Retrying {x} time...")
        pass

    sleep(sleep_time)  # wait for 2 seconds before trying to fetch the data again
    sleep_time *= 2  # exponential backoff