Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,974 Bytes
947767a 5901356 947767a ff53d73 947767a ff53d73 5901356 ff53d73 b2bb484 7cb0f3c 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 5901356 947767a 0fe630d 947767a 0fe630d 947767a 0fe630d 947767a 801cdff 947767a 5901356 947767a 5901356 947767a 5901356 947767a ff53d73 947767a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import spaces
import os
import gradio as gr
from time import sleep
from signal import SIGTERM
from psutil import process_iter
from settings import GRAND3D_Settings
from utils import list_dirs
import open3d as o3d
from copy import deepcopy
import numpy as np
import re
from bs4 import BeautifulSoup
import trimesh.transformations as tf
import logging
# The following line sets the root logger level as well.
# It's equivalent to both previous statements combined:
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
from session import Session
from model import load_model_and_dataloader, get_model_response
# Load model and tokenizer once at the start
model_path = "checkpoints/merged_weights_grounded_obj_ref"
model_base = None
load_8bit = False
load_4bit = False
load_bf16 = True
scene_to_obj_mapping = "data/predicted_scene_data_update_5.json"
# scene_to_obj_mapping = "data/scanrefer_ground_truth_scene_graph.json"
max_new_tokens = 5000
obj_context_feature_type = "text"
tokenizer, model, data_loader = load_model_and_dataloader(
model_path=model_path,
model_base=model_base,
load_8bit=load_8bit,
load_4bit=load_4bit,
load_bf16=load_bf16,
scene_to_obj_mapping=scene_to_obj_mapping,
device_map="cpu",
) # Huggingface Zero-GPU has to use .to(device) to set the device, otherwise it will fail
model.to("cuda") # Huggingface Zero-GPU requires explicit device placement
def get_chatbot_response(user_chat_input, scene_id):
# Get the response from the model
prompt, response = get_model_response(
model=model,
tokenizer=tokenizer,
data_loader=data_loader,
scene_id=scene_id,
user_input=user_chat_input,
max_new_tokens=max_new_tokens,
temperature=0.2,
top_p=0.9,
)
return scene_id, prompt, response
# def get_chatbot_response(user_chat_input):
# # Get the response from the chatbot
# scene_id = "scene0643_00"
# scene_graph = """
# Object-centric context: <obj_0>: {'category': 'door', 'centroid': '[0.35, 1.99, 1.11]', 'extent': '[0.68, 0.65, 2.11]'}; <obj_1>: {'category': 'ceiling', 'centroid': '[1.04, -1.39, 2.68]', 'extent': '[0.18, 0.90, 0.05]'}; <obj_2>: {'category': 'ceiling', 'centroid': '[0.77, 2.09, 2.65]', 'extent': '[0.94, 0.86, 0.11]'}; <obj_3>: {'category': 'trash can', 'centroid': '[-0.61, -2.16, 0.21]', 'extent': '[0.42, 0.36, 0.41]'}; <obj_4>: {'category': 'chair', 'centroid': '[0.35, -1.35, 0.50]', 'extent': '[0.46, 0.47, 0.94]'}; <obj_5>: {'category': 'trash can', 'centroid': '[-0.22, -2.13, 0.24]', 'extent': '[0.40, 0.28, 0.39]'}; <obj_6>: {'category': 'cabinet', 'centroid': '[-1.24, 0.00, 0.58]', 'extent': '[0.61, 0.57, 0.79]'}; <obj_7>: {'category': 'cup', 'centroid': '[0.62, 0.23, 0.77]', 'extent': '[0.14, 0.14, 0.08]'}; <obj_8>: {'category': 'window', 'centroid': '[-0.35, -2.87, 1.13]', 'extent': '[2.05, 0.60, 1.07]'}; <obj_9>: {'category': 'file cabinet', 'centroid': '[0.40, -1.97, 0.39]', 'extent': '[0.40, 0.66, 0.73]'}; <obj_10>: {'category': 'monitor', 'centroid': '[0.92, -1.51, 0.97]', 'extent': '[0.25, 0.57, 0.47]'}; <obj_11>: {'category': 'chair', 'centroid': '[0.34, 0.59, 0.43]', 'extent': '[0.65, 0.64, 0.94]'}; <obj_12>: {'category': 'desk', 'centroid': '[0.64, 0.75, 0.57]', 'extent': '[0.76, 1.60, 0.82]'}; <obj_13>: {'category': 'chair', 'centroid': '[0.55, -0.33, 0.48]', 'extent': '[0.60, 0.60, 0.87]'}; <obj_14>: {'category': 'office chair', 'centroid': '[-0.28, 1.56, 0.46]', 'extent': '[0.67, 0.55, 1.02]'}; <obj_15>: {'category': 'office chair', 'centroid': '[-0.86, -1.53, 0.43]', 'extent': '[0.54, 0.64, 0.97]'}; <obj_16>: {'category': 'chair', 'centroid': '[-0.28, 1.56, 0.46]', 'extent': '[0.67, 0.55, 1.02]'}; <obj_17>: {'category': 'monitor', 'centroid': '[0.98, 0.56, 1.05]', 'extent': '[0.21, 0.60, 0.54]'}; <obj_18>: {'category': 'doorframe', 'centroid': '[-0.17, 2.42, 1.01]', 'extent': '[0.16, 0.18, 1.70]'}; <obj_19>: {'category': 'chair', 'centroid': '[-0.86, -1.53, 0.43]', 'extent': '[0.54, 0.64, 0.97]'}; <obj_20>: {'category': 'bookshelf', 'centroid': '[0.93, 2.00, 1.34]', 'extent': '[0.73, 0.99, 2.60]'}; <obj_21>: {'category': 'office chair', 'centroid': '[0.35, -1.35, 0.50]', 'extent': '[0.46, 0.47, 0.94]'}; <obj_22>: {'category': 'desk', 'centroid': '[-1.23, 1.60, 0.70]', 'extent': '[0.80, 2.01, 0.51]'}; <obj_23>: {'category': 'book', 'centroid': '[0.91, 1.31, 0.89]', 'extent': '[0.34, 0.32, 0.30]'}; <obj_24>: {'category': 'desk', 'centroid': '[-1.24, -1.12, 0.54]', 'extent': '[0.79, 1.88, 0.85]'}; <obj_25>: {'category': 'desk', 'centroid': '[0.63, -1.51, 0.53]', 'extent': '[0.81, 1.97, 0.85]'}; <obj_26>: {'category': 'calendar', 'centroid': '[-1.72, -0.44, 1.40]', 'extent': '[0.07, 0.88, 0.83]'}; <obj_27>: {'category': 'office chair', 'centroid': '[0.34, 0.59, 0.43]', 'extent': '[0.65, 0.64, 0.94]'}; <obj_28>: {'category': 'file cabinet', 'centroid': '[-1.02, -0.76, 0.47]', 'extent': '[0.58, 0.75, 0.81]'}; <obj_29>: {'category': 'cup', 'centroid': '[-1.26, -1.65, 0.78]', 'extent': '[0.10, 0.12, 0.04]'}; <obj_30>: {'category': 'keyboard', 'centroid': '[0.55, 0.84, 0.73]', 'extent': '[0.22, 0.15, 0.03]'}
# """
# response = """
# <detailed_grounding>a <p>brown wooden office desk</p>[<obj_12>] on the left to the <p>gray shelf</p>[<obj_20>].</detailed_grounding> <refer_expression_grounding>These sentences refer to <p>the brown wooden office desk</p>[<obj_12>].</refer_expression_grounding>
# """
# return scene_id, scene_graph, response
# Resetting to blank
def reset_textbox():
return gr.update(value="")
# to set a component as visible=False
def set_visible_false():
return gr.update(visible=False)
# to set a component as visible=True
def set_visible_true():
return gr.update(visible=True)
def change_scene_or_system_prompt(dropdown_scene_selection: str):
# reset model_3d, chatbot_for_display, chat_counter, server_status_code
new_session_state = Session.create_for_scene(dropdown_scene_selection)
file_name = f"{dropdown_scene_selection}.obj"
print(os.path.join(GRAND3D_Settings.data_path, dropdown_scene_selection, file_name))
return (
new_session_state,
os.path.join(GRAND3D_Settings.data_path, dropdown_scene_selection, file_name),
None,
new_session_state.chat_history_for_display,
)
def cylinder_frame(p0, p1):
"""Calculate the transformation matrix to position a unit cylinder between two points."""
direction = np.asarray(p1) - np.asarray(p0)
length = np.linalg.norm(direction)
direction /= length
# Computing rotation matrix using Rodrigues' formula
rot_axis = np.cross([0, 0, 1], direction)
rot_angle = np.arccos(np.dot([0, 0, 1], direction))
rot_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(rot_axis * rot_angle)
# Translation
translation = (np.asarray(p0) + np.asarray(p1)) / 2
transformation = np.eye(4)
transformation[:3, :3] = rot_matrix
transformation[:3, 3] = translation
scaling = np.eye(4)
scaling[2, 2] = length
transformation = np.matmul(transformation, scaling)
return transformation
def create_cylinder_mesh(p0, p1, color, radius=0.04, resolution=20, split=1):
"""Create a colored cylinder mesh between two points p0 and p1."""
cylinder = o3d.geometry.TriangleMesh.create_cylinder(
radius=radius, height=1, resolution=resolution, split=split
)
transformation = cylinder_frame(p0, p1)
cylinder.transform(transformation)
# Apply color
cylinder.paint_uniform_color(color)
return cylinder
def prettify_mesh_for_gradio(mesh):
# Define the transformation matrix
T = np.array([[0, -1, 0, 0], [0, 0, 1, 0], [-1, 0, 0, 0], [0, 0, 0, 1]])
# Apply the transformation
mesh.transform(T)
mesh.scale(10.0, center=mesh.get_center())
bright_factor = 1 # Adjust this factor to get the desired brightness
mesh.vertex_colors = o3d.utility.Vector3dVector(
np.clip(np.asarray(mesh.vertex_colors) * bright_factor, 0, 1)
)
return mesh
def create_bbox(center, extents, color=[1, 0, 0], radius=0.02):
"""Create a colored bounding box with given center, extents, and line thickness."""
# ... [The same code as before to define corners and lines] ...
print(extents)
print(type(extents))
extents = extents.replace("[", "").replace("]", "")
center = center.replace("[", "").replace("]", "")
extents = [float(x.strip()) for x in extents.split(",")]
center = [float(x.strip()) for x in center.split(",")]
angle = -np.pi / 2 # 90 degrees
axis = [1, 0, 0] # Rotate around x-axis
R = tf.rotation_matrix(angle, axis)
center_homogeneous = np.append(center, 1)
extents_homogeneous = np.append(extents, 1)
# Apply the rotation to the center and extents
rotated_center = np.dot(R, center_homogeneous)[:3]
rotated_extents = np.dot(R, extents_homogeneous)[:3]
sx, sy, sz = rotated_extents
x_corners = [sx / 2, sx / 2, -sx / 2, -sx / 2, sx / 2, sx / 2, -sx / 2, -sx / 2]
y_corners = [sy / 2, -sy / 2, -sy / 2, sy / 2, sy / 2, -sy / 2, -sy / 2, sy / 2]
z_corners = [sz / 2, sz / 2, sz / 2, sz / 2, -sz / 2, -sz / 2, -sz / 2, -sz / 2]
corners_3d = np.vstack([x_corners, y_corners, z_corners])
corners_3d[0, :] = corners_3d[0, :] + float(rotated_center[0])
corners_3d[1, :] = corners_3d[1, :] + float(rotated_center[1])
corners_3d[2, :] = corners_3d[2, :] + float(rotated_center[2])
corners_3d = np.transpose(corners_3d)
lines = [
[0, 1],
[1, 2],
[2, 3],
[3, 0],
[4, 5],
[5, 6],
[6, 7],
[7, 4],
[0, 4],
[1, 5],
[2, 6],
[3, 7],
]
cylinders = []
for line in lines:
p0, p1 = corners_3d[line[0]], corners_3d[line[1]]
cylinders.append(create_cylinder_mesh(p0, p1, color, radius))
return cylinders
def highlight_clusters_in_mesh(
centroids_extents_detailed,
centroids_extends_refer,
mesh,
output_dir,
output_file_name="highlighted_mesh.obj",
):
print("*" * 50)
# Visualize the highlighted points by drawing 3D bounding boxes overlay on a mesh
old_mesh = deepcopy(mesh)
output_path = os.path.join(output_dir, "mesh_vis")
if not os.path.exists(output_path):
os.makedirs(output_path)
# Create a combined mesh to hold both the original and the bounding boxes
combined_mesh = o3d.geometry.TriangleMesh()
combined_mesh += old_mesh
# Draw bounding boxes for each centroid and extent
for center, extent in centroids_extents_detailed:
print("center: ", center)
print("extent: ", extent)
bbox = create_bbox(
center, extent, color=[1, 1, 0]
) # yellow color for all boxes
for b in bbox:
combined_mesh += b
for center, extent in centroids_extends_refer:
bbox = create_bbox(center, extent, color=[0, 1, 0])
for b in bbox:
combined_mesh += b
# Save the combined mesh
output_file_path = os.path.join(output_path, output_file_name)
o3d.io.write_triangle_mesh(
output_file_path, combined_mesh, write_vertex_colors=True
)
print("*" * 50)
return output_file_path
def extract_objects(text):
return re.findall(r"<obj_\d+>", text)
# Parse the scene graph into a dictionary
def parse_scene_graph(scene_graph):
scene_dict = {}
matches = re.findall(r"<obj_(\d+)>: (\{.*?\})", scene_graph)
for match in matches:
obj_id = f"<obj_{match[0]}>"
obj_data = eval(match[1])
scene_dict[obj_id] = obj_data
return scene_dict
def get_centroids_extents(obj_list, scene_dict):
centroids_extents = []
for obj in obj_list:
if obj in scene_dict:
centroid = scene_dict[obj]["centroid"]
extent = scene_dict[obj]["extent"]
centroids_extents.append((centroid, extent))
return centroids_extents
@spaces.GPU
def language_model_forward(
session_state, user_chat_input, top_p, temperature, dropdown_scene
):
session_state = Session.create_for_scene(dropdown_scene)
session_state.chat_history_for_display.append(
(user_chat_input, None)
) # append in a tuple format, first is user input, second is assistant response
yield session_state, None, session_state.chat_history_for_display
# Load in a 3D model
file_name = f"{session_state.scene}.obj"
original_model_path = os.path.join(
GRAND3D_Settings.data_path, session_state.scene, file_name
)
print("original_model_path: ", original_model_path)
# Load the GLB mesh
mesh = o3d.io.read_triangle_mesh(original_model_path)
# get chatbot response
scene_id, scene_graph, response = get_chatbot_response(
user_chat_input, session_state.scene
)
assert scene_id == session_state.scene # Ensure the scene ID matches
# use scene_graph and response to get centroids and extents
# Parse the scene graph into a dictionary
scene_dict = parse_scene_graph(scene_graph)
print("Model Input: " + str(scene_dict))
print("=" * 50)
print("Model Response: " + response)
# Parse the response to get detailed and refer expression groundings
soup = BeautifulSoup(response, "html.parser")
detailed_grounding_html = str(soup.find("detailed_grounding"))
refer_expression_grounding_html = str(soup.find("refer_expression_grounding"))
# Extract objects from both sections
detailed_objects = extract_objects(detailed_grounding_html)
refer_objects = extract_objects(refer_expression_grounding_html)
# Extract objects from both sections
print("detailed_objects: ", detailed_objects)
print("refer_objects: ", refer_objects)
# Perform set subtraction to get remaining objects
remaining_objects = list(set(detailed_objects) - set(refer_objects))
print("remaining_objects: ", remaining_objects)
centroids_extents_detailed = get_centroids_extents(remaining_objects, scene_dict)
print("centroids_extents_detailed: ", centroids_extents_detailed)
centroids_extents_refer = get_centroids_extents(refer_objects, scene_dict)
print("centroids_extents_refer: ", centroids_extents_refer)
# Define your centroids and extents here (example data)
# Highlight clusters in the mesh and save it
session_output_dir = session_state.get_session_output_dir()
highlighted_model_path = highlight_clusters_in_mesh(
centroids_extents_detailed,
centroids_extents_refer,
mesh,
session_output_dir,
output_file_name="highlighted_model.obj",
)
# Update the chat history with the response
last_turn = session_state.chat_history_for_display[
-1
] # first is user input, second is assistant response
last_turn = (last_turn[0], response)
session_state.chat_history_for_display[-1] = last_turn
session_state.save() # save the session state
yield session_state, highlighted_model_path, session_state.chat_history_for_display
title = """<h1 align="center">π π¬ 3D-GRAND: Towards Better Grounding and Less Hallucination for 3D-LLMs π</h1>
<p><center>
<a href="https://3d-grand.github.io/" target="_blank">[Project Page]</a>
<a href="https://www.dropbox.com/scl/fo/5p9nb4kalnz407sbqgemg/AG1KcxeIS_SUoJ1hoLPzv84?rlkey=weunabtbiz17jitfv3f4jpmm1&dl=0" target="_blank">[3D-GRAND Data]</a>
<a href="https://www.dropbox.com/scl/fo/inemjtgqt2nkckymn65rp/AGi2KSYU9AHbnpuj7TWYihs?rlkey=ldbn36b1z6nqj74yv5ph6cqwc&dl=0" target="_blank">[3D-POPE Data]</a>
</center></p>
"""
# Modifying existing Gradio Theme
# theme = gr.themes.Soft(
# primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.pink
# )
with gr.Blocks(theme=gr.themes.Soft()) as demo:
session_state = gr.State(Session.create)
gr.HTML(title)
with gr.Column():
with gr.Row():
with gr.Column(scale=5):
dropdown_scene = gr.Dropdown(
choices=list_dirs(GRAND3D_Settings.data_path),
value=GRAND3D_Settings.default_scene,
interactive=True,
label="Select a scene",
)
model_3d = gr.Model3D(
value=os.path.join(
GRAND3D_Settings.data_path,
GRAND3D_Settings.default_scene,
f"{GRAND3D_Settings.default_scene}.obj",
),
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model",
camera_position=(-50, 65, 6),
zoom_speed=10.0,
)
gr.HTML(
"""<center><strong>
π SCROLL or DRAG on the 3D Model
to zoom in/out and rotate. Press CTRL and DRAG to pan.
</strong></center>
"""
)
gr.HTML(
"""<center><strong>
π When grounding finishes,
the grounding result will be displayed below.
</strong></center>
"""
)
model_3d_grounding_result = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="Grounding Result",
camera_position=(-50, 65, 6),
zoom_speed=10.0,
)
gr.HTML(
"""<center><strong>
<div style="display:inline-block; color:green">■</div> = Predicted Target
<div style="display:inline-block; color:gold">■</div> = Grounded Chain-of-Thought
</strong></center>
"""
)
with gr.Column(scale=5):
chat_history_for_display = gr.Chatbot(
value=[(None, GRAND3D_Settings.INITIAL_MSG_FOR_DISPLAY)],
label="Chat Assistant (Powered by 3D-GRAND Model)",
height=510,
render_markdown=False,
sanitize_html=False,
)
with gr.Row():
with gr.Column(scale=8):
user_chat_input = gr.Textbox(
placeholder="I want to find the chair near the table",
show_label=False,
)
with gr.Column(scale=1, min_width=0):
send_button = gr.Button("Send", variant="primary")
with gr.Column(scale=1, min_width=0):
clear_button = gr.Button("Clear")
with gr.Row():
with gr.Accordion(label="Examples for user message:", open=True):
gr.Examples(
examples=[
["The TV on the drawer, opposing the bed."],
["the desk next to the window"],
],
inputs=user_chat_input,
)
with gr.Accordion("Parameters", open=False, visible=False):
top_p = gr.Slider(
minimum=0,
maximum=1.0,
value=1.0,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
temperature = gr.Slider(
minimum=0,
maximum=5.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
# gr.Markdown("### Terms of Service")
# gr.HTML(
# """By using this service, users are required to agree to the following terms:
# The service is a research preview intended for non-commercial use only.
# The service may collect user dialogue data for future research."""
# )
# Event handling
dropdown_scene.change(
fn=change_scene_or_system_prompt,
inputs=[dropdown_scene],
outputs=[
session_state,
model_3d,
model_3d_grounding_result,
chat_history_for_display,
],
)
clear_button.click(
fn=change_scene_or_system_prompt,
inputs=[dropdown_scene],
outputs=[
session_state,
model_3d,
model_3d_grounding_result,
chat_history_for_display,
],
)
user_chat_input.submit(
fn=language_model_forward,
inputs=[session_state, user_chat_input, top_p, temperature, dropdown_scene],
outputs=[session_state, model_3d_grounding_result, chat_history_for_display],
)
send_button.click(
fn=language_model_forward,
inputs=[session_state, user_chat_input, top_p, temperature, dropdown_scene],
outputs=[session_state, model_3d_grounding_result, chat_history_for_display],
)
send_button.click(reset_textbox, [], [user_chat_input])
user_chat_input.submit(reset_textbox, [], [user_chat_input])
sleep_time = 2
port = 7011
for x in range(1, 10): # try 8 times
try:
# put your logic here
gr.close_all()
demo.queue(
max_size=20,
).launch(
# debug=True,
# server_name="0.0.0.0",
# server_port=port,
share=True
)
except OSError:
for proc in process_iter():
for conns in proc.connections(kind="inet"):
if conns.laddr.port == port:
proc.send_signal(SIGTERM) # or SIGKILL
print(f"Retrying {x} time...")
pass
sleep(sleep_time) # wait for 2 seconds before trying to fetch the data again
sleep_time *= 2 # exponential backoff
|