File size: 2,333 Bytes
1e19e28
 
 
 
 
cb568f0
1e19e28
 
 
 
 
 
 
b873cb9
57ffa19
 
1e19e28
 
b873cb9
0f4f627
b873cb9
 
1e19e28
b873cb9
 
1e19e28
 
b873cb9
1e19e28
 
 
ee0f30d
 
 
62b1ca5
57ffa19
 
 
62b1ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f4f627
 
62b1ca5
 
 
 
 
 
 
ee0f30d
 
 
 
62b1ca5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from torch.utils.data import IterableDataset


def count_lines(input_path: str) -> int:
    with open(input_path, "r", encoding="utf8") as f:
        return sum(1 for _ in f)


class DatasetReader(IterableDataset):
    def __init__(self, filename, tokenizer, max_length=128):
        self.filename = filename
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.current_line = 0
        self.total_lines = count_lines(filename)
        print(f"{self.total_lines} lines in {filename}")

    def preprocess(self, text: str):
        self.current_line += 1
        text = text.strip()
        if len(text) == 0:
            print(f"Warning: empty sentence at line {self.current_line}")
        return self.tokenizer(
            text,
            padding=False,
            truncation=True,
            max_length=self.max_length,
            return_tensors=None,
        )

    def __iter__(self):
        file_itr = open(self.filename, "r", encoding="utf8")
        mapped_itr = map(self.preprocess, file_itr)
        return mapped_itr

    def __len__(self):
        return self.total_lines


class ParallelTextReader(IterableDataset):
    def __init__(self, pred_path: str, gold_path: str):
        self.pred_path = pred_path
        self.gold_path = gold_path
        pref_filename_lines = count_lines(pred_path)
        gold_path_lines = count_lines(gold_path)
        assert pref_filename_lines == gold_path_lines, (
            f"Lines in {pred_path} and {gold_path} do not match "
            f"{pref_filename_lines} vs {gold_path_lines}"
        )
        self.num_sentences = gold_path_lines
        self.current_line = 0

    def preprocess(self, pred: str, gold: str):
        self.current_line += 1
        pred = pred.strip()
        gold = gold.strip()
        if len(pred) == 0:
            print(f"Warning: Pred empty sentence at line {self.current_line}")
        if len(gold) == 0:
            print(f"Warning: Gold empty sentence at line {self.current_line}")
        return pred, [gold]

    def __iter__(self):
        pred_itr = open(self.pred_path, "r", encoding="utf8")
        gold_itr = open(self.gold_path, "r", encoding="utf8")
        mapped_itr = map(self.preprocess, pred_itr, gold_itr)
        return mapped_itr

    def __len__(self):
        return self.num_sentences