File size: 25,009 Bytes
2493822
 
 
 
 
63b3783
2493822
63b3783
2493822
63b3783
2493822
 
 
 
 
 
 
 
 
 
 
 
63b3783
2493822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b3783
2493822
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493822
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493822
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493822
63b3783
 
 
 
 
 
 
 
 
 
2493822
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b3783
2493822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493822
63b3783
2493822
 
 
 
 
63b3783
2493822
 
 
 
 
 
63b3783
2493822
 
 
 
 
 
63b3783
2493822
 
 
 
63b3783
 
2493822
 
63b3783
 
2493822
 
63b3783
2493822
 
 
 
 
 
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493822
 
 
 
63b3783
2493822
 
 
63b3783
 
2493822
ee305a4
ea7f5b6
 
 
ee305a4
63b3783
ee305a4
63b3783
ee305a4
63b3783
ee305a4
63b3783
 
 
 
 
 
 
 
 
 
ee305a4
 
 
 
 
 
 
 
ea7f5b6
ee305a4
 
63b3783
ee305a4
 
ea7f5b6
 
 
 
 
 
 
 
 
 
 
 
 
63b3783
ee305a4
63b3783
 
 
ee305a4
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee305a4
63b3783
 
 
 
 
 
 
 
 
ee305a4
63b3783
 
 
 
 
 
 
 
ee305a4
63b3783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
 
 
 
 
ee305a4
ea7f5b6
 
 
ee305a4
ea7f5b6
ee305a4
ea7f5b6
ee305a4
 
 
ea7f5b6
 
ee305a4
 
 
63b3783
ee305a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
2493822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
63b3783
ea7f5b6
 
 
ee305a4
ea7f5b6
63b3783
ee305a4
ea7f5b6
 
 
 
 
63b3783
ee305a4
ea7f5b6
ee305a4
ea7f5b6
ee305a4
ea7f5b6
63b3783
ea7f5b6
 
ee305a4
ea7f5b6
63b3783
 
ea7f5b6
 
2493822
 
ea7f5b6
 
63b3783
ee305a4
ea7f5b6
 
ee305a4
ea7f5b6
 
2493822
 
 
 
 
 
 
 
63b3783
 
 
2493822
 
63b3783
2493822
63b3783
2493822
 
 
63b3783
ea7f5b6
ee305a4
ea7f5b6
 
63b3783
ee305a4
ea7f5b6
 
63b3783
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# import plotly.graph_objects as go
# import textwrap
# import re
# from collections import defaultdict

# def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info):
#     # Combine nodes into one list with appropriate labels
#     nodes = [paraphrased_sentence] + scheme_sentences
#     nodes[0] += ' L0'  # Paraphrased sentence is level 0
#     for i in range(1, len(nodes)):
#         nodes[i] += ' L1'  # Scheme sentences are level 1

#     # Define the highlight_words function
#     def highlight_words(sentence, color_map):
#         for word, color in color_map.items():
#             sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
#         return sentence

#     # Clean and wrap nodes, and highlight specified words globally
#     cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
#     global_color_map = dict(highlight_info)
#     highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
#     wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=50)) for node in highlighted_nodes]

#     # Function to determine tree levels and create edges dynamically
#     def get_levels_and_edges(nodes):
#         levels = {}
#         edges = []
#         for i, node in enumerate(nodes):
#             level = int(node.split()[-1][1])
#             levels[i] = level

#         # Add edges from L0 to all L1 nodes
#         root_node = next(i for i, level in levels.items() if level == 0)
#         for i, level in levels.items():
#             if level == 1:
#                 edges.append((root_node, i))

#         return levels, edges

#     # Get levels and dynamic edges
#     levels, edges = get_levels_and_edges(nodes)
#     max_level = max(levels.values(), default=0)

#     # Calculate positions
#     positions = {}
#     level_heights = defaultdict(int)
#     for node, level in levels.items():
#         level_heights[level] += 1

#     y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
#     x_gap = 2
#     l1_y_gap = 10

#     for node, level in levels.items():
#         if level == 1:
#             positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
#         else:
#             positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
#         y_offsets[level] += 1

#     # Function to highlight words in a wrapped node string
#     def color_highlighted_words(node, color_map):
#         parts = re.split(r'(\{\{.*?\}\})', node)
#         colored_parts = []
#         for part in parts:
#             match = re.match(r'\{\{(.*?)\}\}', part)
#             if match:
#                 word = match.group(1)
#                 color = color_map.get(word, 'black')
#                 colored_parts.append(f"<span style='color: {color};'>{word}</span>")
#             else:
#                 colored_parts.append(part)
#         return ''.join(colored_parts)

#     # Define the text for each edge
#     edge_texts = [
#         "Highest Entropy Masking",
#         "Pseudo-random Masking",
#         "Random Masking",
#         "Greedy Sampling",
#         "Temperature Sampling",
#         "Exponential Minimum Sampling",
#         "Inverse Transform Sampling",
#         "Greedy Sampling",
#         "Temperature Sampling",
#         "Exponential Minimum Sampling",
#         "Inverse Transform Sampling",
#         "Greedy Sampling",
#         "Temperature Sampling",
#         "Exponential Minimum Sampling",
#         "Inverse Transform Sampling"
#     ]

#     # Create figure
#     fig1 = go.Figure()

#     # Add nodes to the figure
#     for i, node in enumerate(wrapped_nodes):
#         colored_node = color_highlighted_words(node, global_color_map)
#         x, y = positions[i]
#         fig1.add_trace(go.Scatter(
#             x=[-x],  # Reflect the x coordinate
#             y=[y],
#             mode='markers',
#             marker=dict(size=10, color='blue'),
#             hoverinfo='none'
#         ))
#         fig1.add_annotation(
#             x=-x,  # Reflect the x coordinate
#             y=y,
#             text=colored_node,
#             showarrow=False,
#             xshift=15,
#             align="center",
#             font=dict(size=12),
#             bordercolor='black',
#             borderwidth=1,
#             borderpad=2,
#             bgcolor='white',
#             width=300,
#             height=120
#         )

#     # Add edges and text above each edge
#     for i, edge in enumerate(edges):
#         x0, y0 = positions[edge[0]]
#         x1, y1 = positions[edge[1]]
#         fig1.add_trace(go.Scatter(
#             x=[-x0, -x1],  # Reflect the x coordinates
#             y=[y0, y1],
#             mode='lines',
#             line=dict(color='black', width=1)
#         ))

#         # Calculate the midpoint of the edge
#         mid_x = (-x0 + -x1) / 2
#         mid_y = (y0 + y1) / 2

#         # Adjust y position to shift text upwards
#         text_y_position = mid_y + 0.8  # Increase this value to shift the text further upwards

#         # Add text annotation above the edge
#         fig1.add_annotation(
#             x=mid_x,
#             y=text_y_position,
#             text=edge_texts[i],  # Use the text specific to this edge
#             showarrow=False,
#             font=dict(size=12),
#             align="center"
#         )

#     fig1.update_layout(
#         showlegend=False,
#         margin=dict(t=20, b=20, l=20, r=20),
#         xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
#         yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
#         width=1435,  # Adjusted width to accommodate more levels
#         height=1000   # Adjusted height to accommodate more levels
#     )

#     return fig1



# def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info):
#     # Combine nodes into one list with appropriate labels
#     nodes = scheme_sentences + sampled_sentence
#     para_len = len(scheme_sentences)

#     # Reassign levels: L1 -> L0, L2 -> L1
#     for i in range(para_len):
#         nodes[i] += ' L0'  # Scheme sentences are now level 0
#     for i in range(para_len, len(nodes)):
#         nodes[i] += ' L1'  # Sampled sentences are now level 1

#     # Define the highlight_words function
#     def highlight_words(sentence, color_map):
#         for word, color in color_map.items():
#             sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
#         return sentence

#     # Clean and wrap nodes, and highlight specified words globally
#     cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
#     global_color_map = dict(highlight_info)
#     highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
#     wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]

#     # Function to determine tree levels and create edges dynamically
#     def get_levels_and_edges(nodes):
#         levels = {}
#         edges = []
#         for i, node in enumerate(nodes):
#             level = int(node.split()[-1][1])
#             levels[i] = level

#         # Add edges from L0 to all L1 nodes
#         l0_indices = [i for i, level in levels.items() if level == 0]
#         l1_indices = [i for i, level in levels.items() if level == 1]

#         # Ensure there are exactly 3 L0 nodes
#         if len(l0_indices) < 3:
#             raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")

#         # Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
#         for i, l1_node in enumerate(l1_indices):
#             if i < 4:
#                 edges.append((l0_indices[0], l1_node))  # Connect to the first L0 node
#             elif i < 8:
#                 edges.append((l0_indices[1], l1_node))  # Connect to the second L0 node
#             else:
#                 edges.append((l0_indices[2], l1_node))  # Connect to the third L0 node

#         return levels, edges

#     # Get levels and dynamic edges
#     levels, edges = get_levels_and_edges(nodes)

#     # Calculate positions
#     positions = {}
#     level_heights = defaultdict(int)
#     for node, level in levels.items():
#         level_heights[level] += 1

#     y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
#     x_gap = 2
#     l1_y_gap = 10

#     for node, level in levels.items():
#         if level == 1:
#             positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
#         else:
#             positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
#         y_offsets[level] += 1

#     # Function to highlight words in a wrapped node string
#     def color_highlighted_words(node, color_map):
#         parts = re.split(r'(\{\{.*?\}\})', node)
#         colored_parts = []
#         for part in parts:
#             match = re.match(r'\{\{(.*?)\}\}', part)
#             if match:
#                 word = match.group(1)
#                 color = color_map.get(word, 'black')
#                 colored_parts.append(f"<span style='color: {color};'>{word}</span>")
#             else:
#                 colored_parts.append(part)
#         return ''.join(colored_parts)

#     # Define the text for each edge
#     edge_texts = [
#         "Highest Entropy Masking",
#         "Pseudo-random Masking",
#         "Random Masking",
#         "Greedy Sampling",
#         "Temperature Sampling",
#         "Exponential Minimum Sampling",
#         "Inverse Transform Sampling",
#         "Greedy Sampling",
#         "Temperature Sampling",
#         "Exponential Minimum Sampling",
#         "Inverse Transform Sampling",
#         "Greedy Sampling",
#         "Temperature Sampling",
#         "Exponential Minimum Sampling",
#         "Inverse Transform Sampling"
#     ]

#     # Create figure
#     fig2 = go.Figure()

#     # Add nodes to the figure
#     for i, node in enumerate(wrapped_nodes):
#         colored_node = color_highlighted_words(node, global_color_map)
#         x, y = positions[i]
#         fig2.add_trace(go.Scatter(
#             x=[-x],  # Reflect the x coordinate
#             y=[y],
#             mode='markers',
#             marker=dict(size=10, color='blue'),
#             hoverinfo='none'
#         ))
#         fig2.add_annotation(
#             x=-x,  # Reflect the x coordinate
#             y=y,
#             text=colored_node,
#             showarrow=False,
#             xshift=15,
#             align="center",
#             font=dict(size=12),
#             bordercolor='black',
#             borderwidth=1,
#             borderpad=2,
#             bgcolor='white',
#             width=450,
#             height=65
#         )

#     # Add edges and text above each edge
#     for i, edge in enumerate(edges):
#         x0, y0 = positions[edge[0]]
#         x1, y1 = positions[edge[1]]
#         fig2.add_trace(go.Scatter(
#             x=[-x0, -x1],  # Reflect the x coordinates
#             y=[y0, y1],
#             mode='lines',
#             line=dict(color='black', width=1)
#         ))

#         # Calculate the midpoint of the edge
#         mid_x = (-x0 + -x1) / 2
#         mid_y = (y0 + y1) / 2

#         # Adjust y position to shift text upwards
#         text_y_position = mid_y + 0.8  # Increase this value to shift the text further upwards

#         # Add text annotation above the edge
#         fig2.add_annotation(A surprising aspect of tests, specifically self-testing soon after exposure to new material, is that they can significantly improve your ability to learn, apply, and maintain new knowledge. 
#             x=mid_x,
#             y=text_y_position,
#             text=edge_texts[i],  # Use the text specific to this edge
#             showarrow=False,
#             font=dict(size=12),
#             align="center"
#         )

#     fig2.update_layout(
#         showlegend=False,
#         margin=dict(t=20, b=20, l=20, r=20),
#         xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
#         yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
#         width=1435,  # Adjusted width to accommodate more levels
#         height=1000   # Adjusted height to accommodate more levels
#     )

#     return fig2


import plotly.graph_objects as go
import textwrap
import re
from collections import defaultdict

def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info, common_grams):
    # Combine nodes into one list with appropriate labels
    nodes = [paraphrased_sentence] + scheme_sentences
    nodes[0] += ' L0'  # Paraphrased sentence is level 0
    for i in range(1, len(nodes)):
        nodes[i] += ' L1'  # Scheme sentences are level 1

    # Function to apply LCS numbering based on common_grams
    def apply_lcs_numbering(sentence, common_grams):
        for idx, lcs in common_grams:
            # Only replace if the LCS is a whole word (not part of another word)
            sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
        return sentence

    # Apply LCS numbering
    nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]

    # Define the highlight_words function
    def highlight_words(sentence, color_map):
        for word, color in color_map.items():
            sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
        return sentence

    # Clean and wrap nodes, and highlight specified words globally
    cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
    global_color_map = dict(highlight_info)
    highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
    wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=55)) for node in highlighted_nodes]

    # Function to determine tree levels and create edges dynamically
    def get_levels_and_edges(nodes):
        levels = {}
        edges = []
        for i, node in enumerate(nodes):
            level = int(node.split()[-1][1])
            levels[i] = level

        # Add edges from L0 to all L1 nodes
        root_node = next(i for i, level in levels.items() if level == 0)
        for i, level in levels.items():
            if level == 1:
                edges.append((root_node, i))

        return levels, edges

    # Get levels and dynamic edges
    levels, edges = get_levels_and_edges(nodes)
    max_level = max(levels.values(), default=0)

    # Calculate positions
    positions = {}
    level_heights = defaultdict(int)
    for node, level in levels.items():
        level_heights[level] += 1

    y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
    x_gap = 2
    l1_y_gap = 10

    for node, level in levels.items():
        if level == 1:
            positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
        else:
            positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
        y_offsets[level] += 1

    # Function to highlight words in a wrapped node string
    def color_highlighted_words(node, color_map):
        parts = re.split(r'(\{\{.*?\}\})', node)
        colored_parts = []
        for part in parts:
            match = re.match(r'\{\{(.*?)\}\}', part)
            if match:
                word = match.group(1)
                color = color_map.get(word, 'black')
                colored_parts.append(f"<span style='color: {color};'>{word}</span>")
            else:
                colored_parts.append(part)
        return ''.join(colored_parts)

    # Define the text for each edge
    edge_texts = [
        "Highest Entropy Masking",
        "Pseudo-random Masking",
        "Random Masking",
        "Greedy Sampling",
        "Temperature Sampling",
        "Exponential Minimum Sampling",
        "Inverse Transform Sampling",
        "Greedy Sampling",
        "Temperature Sampling",
        "Exponential Minimum Sampling",
        "Inverse Transform Sampling",
        "Greedy Sampling",
        "Temperature Sampling",
        "Exponential Minimum Sampling",
        "Inverse Transform Sampling"
    ]

    # Create figure
    fig1 = go.Figure()

    # Add nodes to the figure
    for i, node in enumerate(wrapped_nodes):
        colored_node = color_highlighted_words(node, global_color_map)
        x, y = positions[i]
        fig1.add_trace(go.Scatter(
            x=[-x],  # Reflect the x coordinate
            y=[y],
            mode='markers',
            marker=dict(size=10, color='blue'),
            hoverinfo='none'
        ))
        fig1.add_annotation(
            x=-x,  # Reflect the x coordinate
            y=y,
            text=colored_node,
            showarrow=False,
            xshift=15,
            align="center",
            font=dict(size=12),
            bordercolor='black',
            borderwidth=1,
            borderpad=2,
            bgcolor='white',
            width=300,
            height=120
        )

    # Add edges and text above each edge
    for i, edge in enumerate(edges):
        x0, y0 = positions[edge[0]]
        x1, y1 = positions[edge[1]]
        fig1.add_trace(go.Scatter(
            x=[-x0, -x1],  # Reflect the x coordinates
            y=[y0, y1],
            mode='lines',
            line=dict(color='black', width=1)
        ))

        # Calculate the midpoint of the edge
        mid_x = (-x0 + -x1) / 2
        mid_y = (y0 + y1) / 2

        # Adjust y position to shift text upwards
        text_y_position = mid_y + 0.8  # Increase this value to shift the text further upwards

        # Add text annotation above the edge
        fig1.add_annotation(
            x=mid_x,
            y=text_y_position,
            text=edge_texts[i],  # Use the text specific to this edge
            showarrow=False,
            font=dict(size=12),
            align="center"
        )

    fig1.update_layout(
        showlegend=False,
        margin=dict(t=20, b=20, l=20, r=20),
        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        width=1435,  # Adjusted width to accommodate more levels
        height=1000   # Adjusted height to accommodate more levels
    )

    return fig1

def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info, common_grams):
    # Combine nodes into one list with appropriate labels
    nodes = scheme_sentences + sampled_sentence
    para_len = len(scheme_sentences)

    # Reassign levels: L1 -> L0, L2 -> L1
    for i in range(para_len):
        nodes[i] += ' L0'  # Scheme sentences are now level 0
    for i in range(para_len, len(nodes)):
        nodes[i] += ' L1'  # Sampled sentences are now level 1

    # Function to apply LCS numbering based on common_grams
    def apply_lcs_numbering(sentence, common_grams):
        for idx, lcs in common_grams:
            # Only replace if the LCS is a whole word (not part of another word)
            sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
        return sentence

    # Apply LCS numbering
    nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]

    # Define the highlight_words function
    def highlight_words(sentence, color_map):
        for word, color in color_map.items():
            sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
        return sentence

    # Clean and wrap nodes, and highlight specified words globally
    cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
    global_color_map = dict(highlight_info)
    highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
    wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]

    # Function to determine tree levels and create edges dynamically
    def get_levels_and_edges(nodes):
        levels = {}
        edges = []
        for i, node in enumerate(nodes):
            level = int(node.split()[-1][1])
            levels[i] = level

        # Add edges from L0 to all L1 nodes
        l0_indices = [i for i, level in levels.items() if level == 0]
        l1_indices = [i for i, level in levels.items() if level == 1]

        # Ensure there are exactly 3 L0 nodes
        if len(l0_indices) < 3:
            raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")

        # Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
        for i, l1_node in enumerate(l1_indices):
            if i < 4:
                edges.append((l0_indices[0], l1_node))  # Connect to the first L0 node
            elif i < 8:
                edges.append((l0_indices[1], l1_node))  # Connect to the second L0 node
            else:
                edges.append((l0_indices[2], l1_node))  # Connect to the third L0 node

        return levels, edges

    # Get levels and dynamic edges
    levels, edges = get_levels_and_edges(nodes)
    max_level = max(levels.values(), default=0)

    # Calculate positions
    positions = {}
    level_heights = defaultdict(int)
    for node, level in levels.items():
        level_heights[level] += 1

    y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
    x_gap = 2
    l1_y_gap = 10

    for node, level in levels.items():
        if level == 1:
            positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
        else:
            positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
        y_offsets[level] += 1

    # Function to highlight words in a wrapped node string
    def color_highlighted_words(node, color_map):
        parts = re.split(r'(\{\{.*?\}\})', node)
        colored_parts = []
        for part in parts:
            match = re.match(r'\{\{(.*?)\}\}', part)
            if match:
                word = match.group(1)
                color = color_map.get(word, 'black')
                colored_parts.append(f"<span style='color: {color};'>{word}</span>")
            else:
                colored_parts.append(part)
        return ''.join(colored_parts)

    # Define the text for each edge
    edge_texts = [
        "Highest Entropy Masking",
        "Pseudo-random Masking",
        "Random Masking",
        "Greedy Sampling",
        "Temperature Sampling",
        "Exponential Minimum Sampling",
        "Inverse Transform Sampling",
        "Greedy Sampling",
        "Temperature Sampling",
        "Exponential Minimum Sampling",
        "Inverse Transform Sampling",
        "Greedy Sampling",
        "Temperature Sampling",
        "Exponential Minimum Sampling",
        "Inverse Transform Sampling"
    ]

    # Create figure
    fig2 = go.Figure()

    # Add nodes to the figure
    for i, node in enumerate(wrapped_nodes):
        colored_node = color_highlighted_words(node, global_color_map)
        x, y = positions[i]
        fig2.add_trace(go.Scatter(
            x=[-x],  # Reflect the x coordinate
            y=[y],
            mode='markers',
            marker=dict(size=10, color='blue'),
            hoverinfo='none'
        ))
        fig2.add_annotation(
            x=-x,  # Reflect the x coordinate
            y=y,
            text=colored_node,
            showarrow=False,
            xshift=15,
            align="center",
            font=dict(size=12),
            bordercolor='black',
            borderwidth=1,
            borderpad=2,
            bgcolor='white',
            width=450,
            height=65
        )

    # Add edges and text above each edge
    for i, edge in enumerate(edges):
        x0, y0 = positions[edge[0]]
        x1, y1 = positions[edge[1]]
        fig2.add_trace(go.Scatter(
            x=[-x0, -x1],  # Reflect the x coordinates
            y=[y0, y1],
            mode='lines',
            line=dict(color='black', width=1)
        ))

        # Calculate the midpoint of the edge
        mid_x = (-x0 + -x1) / 2
        mid_y = (y0 + y1) / 2

        # Adjust y position to shift text upwards
        text_y_position = mid_y + 0.8  # Increase this value to shift the text further upwards

        # Add text annotation above the edge
        # Use a fallback text if we exceed the length of edge_texts
        text = edge_texts[i] if i < len(edge_texts) else f"Edge {i+1}"
        fig2.add_annotation(
            x=mid_x,
            y=text_y_position,
            text=text,  # Use the text specific to this edge
            showarrow=False,
            font=dict(size=12),
            align="center"
        )

    fig2.update_layout(
        showlegend=False,
        margin=dict(t=20, b=20, l=20, r=20),
        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        width=1435,  # Adjusted width to accommodate more levels
        height=1000   # Adjusted height to accommodate more levels
    )

    return fig2