Spaces:
Running
Running
File size: 25,009 Bytes
2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 ee305a4 ea7f5b6 ee305a4 63b3783 ee305a4 63b3783 ee305a4 63b3783 ee305a4 63b3783 ee305a4 ea7f5b6 ee305a4 63b3783 ee305a4 ea7f5b6 63b3783 ee305a4 63b3783 ee305a4 63b3783 ee305a4 63b3783 ee305a4 63b3783 ee305a4 63b3783 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 63b3783 ee305a4 ea7f5b6 2493822 ea7f5b6 63b3783 ea7f5b6 ee305a4 ea7f5b6 63b3783 ee305a4 ea7f5b6 63b3783 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 63b3783 ea7f5b6 ee305a4 ea7f5b6 63b3783 ea7f5b6 2493822 ea7f5b6 63b3783 ee305a4 ea7f5b6 ee305a4 ea7f5b6 2493822 63b3783 2493822 63b3783 2493822 63b3783 2493822 63b3783 ea7f5b6 ee305a4 ea7f5b6 63b3783 ee305a4 ea7f5b6 63b3783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
# import plotly.graph_objects as go
# import textwrap
# import re
# from collections import defaultdict
# def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info):
# # Combine nodes into one list with appropriate labels
# nodes = [paraphrased_sentence] + scheme_sentences
# nodes[0] += ' L0' # Paraphrased sentence is level 0
# for i in range(1, len(nodes)):
# nodes[i] += ' L1' # Scheme sentences are level 1
# # Define the highlight_words function
# def highlight_words(sentence, color_map):
# for word, color in color_map.items():
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
# return sentence
# # Clean and wrap nodes, and highlight specified words globally
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
# global_color_map = dict(highlight_info)
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=50)) for node in highlighted_nodes]
# # Function to determine tree levels and create edges dynamically
# def get_levels_and_edges(nodes):
# levels = {}
# edges = []
# for i, node in enumerate(nodes):
# level = int(node.split()[-1][1])
# levels[i] = level
# # Add edges from L0 to all L1 nodes
# root_node = next(i for i, level in levels.items() if level == 0)
# for i, level in levels.items():
# if level == 1:
# edges.append((root_node, i))
# return levels, edges
# # Get levels and dynamic edges
# levels, edges = get_levels_and_edges(nodes)
# max_level = max(levels.values(), default=0)
# # Calculate positions
# positions = {}
# level_heights = defaultdict(int)
# for node, level in levels.items():
# level_heights[level] += 1
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
# x_gap = 2
# l1_y_gap = 10
# for node, level in levels.items():
# if level == 1:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# else:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# y_offsets[level] += 1
# # Function to highlight words in a wrapped node string
# def color_highlighted_words(node, color_map):
# parts = re.split(r'(\{\{.*?\}\})', node)
# colored_parts = []
# for part in parts:
# match = re.match(r'\{\{(.*?)\}\}', part)
# if match:
# word = match.group(1)
# color = color_map.get(word, 'black')
# colored_parts.append(f"<span style='color: {color};'>{word}</span>")
# else:
# colored_parts.append(part)
# return ''.join(colored_parts)
# # Define the text for each edge
# edge_texts = [
# "Highest Entropy Masking",
# "Pseudo-random Masking",
# "Random Masking",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling"
# ]
# # Create figure
# fig1 = go.Figure()
# # Add nodes to the figure
# for i, node in enumerate(wrapped_nodes):
# colored_node = color_highlighted_words(node, global_color_map)
# x, y = positions[i]
# fig1.add_trace(go.Scatter(
# x=[-x], # Reflect the x coordinate
# y=[y],
# mode='markers',
# marker=dict(size=10, color='blue'),
# hoverinfo='none'
# ))
# fig1.add_annotation(
# x=-x, # Reflect the x coordinate
# y=y,
# text=colored_node,
# showarrow=False,
# xshift=15,
# align="center",
# font=dict(size=12),
# bordercolor='black',
# borderwidth=1,
# borderpad=2,
# bgcolor='white',
# width=300,
# height=120
# )
# # Add edges and text above each edge
# for i, edge in enumerate(edges):
# x0, y0 = positions[edge[0]]
# x1, y1 = positions[edge[1]]
# fig1.add_trace(go.Scatter(
# x=[-x0, -x1], # Reflect the x coordinates
# y=[y0, y1],
# mode='lines',
# line=dict(color='black', width=1)
# ))
# # Calculate the midpoint of the edge
# mid_x = (-x0 + -x1) / 2
# mid_y = (y0 + y1) / 2
# # Adjust y position to shift text upwards
# text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# # Add text annotation above the edge
# fig1.add_annotation(
# x=mid_x,
# y=text_y_position,
# text=edge_texts[i], # Use the text specific to this edge
# showarrow=False,
# font=dict(size=12),
# align="center"
# )
# fig1.update_layout(
# showlegend=False,
# margin=dict(t=20, b=20, l=20, r=20),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# width=1435, # Adjusted width to accommodate more levels
# height=1000 # Adjusted height to accommodate more levels
# )
# return fig1
# def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info):
# # Combine nodes into one list with appropriate labels
# nodes = scheme_sentences + sampled_sentence
# para_len = len(scheme_sentences)
# # Reassign levels: L1 -> L0, L2 -> L1
# for i in range(para_len):
# nodes[i] += ' L0' # Scheme sentences are now level 0
# for i in range(para_len, len(nodes)):
# nodes[i] += ' L1' # Sampled sentences are now level 1
# # Define the highlight_words function
# def highlight_words(sentence, color_map):
# for word, color in color_map.items():
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
# return sentence
# # Clean and wrap nodes, and highlight specified words globally
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
# global_color_map = dict(highlight_info)
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]
# # Function to determine tree levels and create edges dynamically
# def get_levels_and_edges(nodes):
# levels = {}
# edges = []
# for i, node in enumerate(nodes):
# level = int(node.split()[-1][1])
# levels[i] = level
# # Add edges from L0 to all L1 nodes
# l0_indices = [i for i, level in levels.items() if level == 0]
# l1_indices = [i for i, level in levels.items() if level == 1]
# # Ensure there are exactly 3 L0 nodes
# if len(l0_indices) < 3:
# raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")
# # Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
# for i, l1_node in enumerate(l1_indices):
# if i < 4:
# edges.append((l0_indices[0], l1_node)) # Connect to the first L0 node
# elif i < 8:
# edges.append((l0_indices[1], l1_node)) # Connect to the second L0 node
# else:
# edges.append((l0_indices[2], l1_node)) # Connect to the third L0 node
# return levels, edges
# # Get levels and dynamic edges
# levels, edges = get_levels_and_edges(nodes)
# # Calculate positions
# positions = {}
# level_heights = defaultdict(int)
# for node, level in levels.items():
# level_heights[level] += 1
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
# x_gap = 2
# l1_y_gap = 10
# for node, level in levels.items():
# if level == 1:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# else:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# y_offsets[level] += 1
# # Function to highlight words in a wrapped node string
# def color_highlighted_words(node, color_map):
# parts = re.split(r'(\{\{.*?\}\})', node)
# colored_parts = []
# for part in parts:
# match = re.match(r'\{\{(.*?)\}\}', part)
# if match:
# word = match.group(1)
# color = color_map.get(word, 'black')
# colored_parts.append(f"<span style='color: {color};'>{word}</span>")
# else:
# colored_parts.append(part)
# return ''.join(colored_parts)
# # Define the text for each edge
# edge_texts = [
# "Highest Entropy Masking",
# "Pseudo-random Masking",
# "Random Masking",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling"
# ]
# # Create figure
# fig2 = go.Figure()
# # Add nodes to the figure
# for i, node in enumerate(wrapped_nodes):
# colored_node = color_highlighted_words(node, global_color_map)
# x, y = positions[i]
# fig2.add_trace(go.Scatter(
# x=[-x], # Reflect the x coordinate
# y=[y],
# mode='markers',
# marker=dict(size=10, color='blue'),
# hoverinfo='none'
# ))
# fig2.add_annotation(
# x=-x, # Reflect the x coordinate
# y=y,
# text=colored_node,
# showarrow=False,
# xshift=15,
# align="center",
# font=dict(size=12),
# bordercolor='black',
# borderwidth=1,
# borderpad=2,
# bgcolor='white',
# width=450,
# height=65
# )
# # Add edges and text above each edge
# for i, edge in enumerate(edges):
# x0, y0 = positions[edge[0]]
# x1, y1 = positions[edge[1]]
# fig2.add_trace(go.Scatter(
# x=[-x0, -x1], # Reflect the x coordinates
# y=[y0, y1],
# mode='lines',
# line=dict(color='black', width=1)
# ))
# # Calculate the midpoint of the edge
# mid_x = (-x0 + -x1) / 2
# mid_y = (y0 + y1) / 2
# # Adjust y position to shift text upwards
# text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# # Add text annotation above the edge
# fig2.add_annotation(A surprising aspect of tests, specifically self-testing soon after exposure to new material, is that they can significantly improve your ability to learn, apply, and maintain new knowledge.
# x=mid_x,
# y=text_y_position,
# text=edge_texts[i], # Use the text specific to this edge
# showarrow=False,
# font=dict(size=12),
# align="center"
# )
# fig2.update_layout(
# showlegend=False,
# margin=dict(t=20, b=20, l=20, r=20),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# width=1435, # Adjusted width to accommodate more levels
# height=1000 # Adjusted height to accommodate more levels
# )
# return fig2
import plotly.graph_objects as go
import textwrap
import re
from collections import defaultdict
def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info, common_grams):
# Combine nodes into one list with appropriate labels
nodes = [paraphrased_sentence] + scheme_sentences
nodes[0] += ' L0' # Paraphrased sentence is level 0
for i in range(1, len(nodes)):
nodes[i] += ' L1' # Scheme sentences are level 1
# Function to apply LCS numbering based on common_grams
def apply_lcs_numbering(sentence, common_grams):
for idx, lcs in common_grams:
# Only replace if the LCS is a whole word (not part of another word)
sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
return sentence
# Apply LCS numbering
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
# Define the highlight_words function
def highlight_words(sentence, color_map):
for word, color in color_map.items():
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
return sentence
# Clean and wrap nodes, and highlight specified words globally
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
global_color_map = dict(highlight_info)
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=55)) for node in highlighted_nodes]
# Function to determine tree levels and create edges dynamically
def get_levels_and_edges(nodes):
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Add edges from L0 to all L1 nodes
root_node = next(i for i, level in levels.items() if level == 0)
for i, level in levels.items():
if level == 1:
edges.append((root_node, i))
return levels, edges
# Get levels and dynamic edges
levels, edges = get_levels_and_edges(nodes)
max_level = max(levels.values(), default=0)
# Calculate positions
positions = {}
level_heights = defaultdict(int)
for node, level in levels.items():
level_heights[level] += 1
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
x_gap = 2
l1_y_gap = 10
for node, level in levels.items():
if level == 1:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
else:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
y_offsets[level] += 1
# Function to highlight words in a wrapped node string
def color_highlighted_words(node, color_map):
parts = re.split(r'(\{\{.*?\}\})', node)
colored_parts = []
for part in parts:
match = re.match(r'\{\{(.*?)\}\}', part)
if match:
word = match.group(1)
color = color_map.get(word, 'black')
colored_parts.append(f"<span style='color: {color};'>{word}</span>")
else:
colored_parts.append(part)
return ''.join(colored_parts)
# Define the text for each edge
edge_texts = [
"Highest Entropy Masking",
"Pseudo-random Masking",
"Random Masking",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling"
]
# Create figure
fig1 = go.Figure()
# Add nodes to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, global_color_map)
x, y = positions[i]
fig1.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig1.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=12),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=300,
height=120
)
# Add edges and text above each edge
for i, edge in enumerate(edges):
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig1.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
# Calculate the midpoint of the edge
mid_x = (-x0 + -x1) / 2
mid_y = (y0 + y1) / 2
# Adjust y position to shift text upwards
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# Add text annotation above the edge
fig1.add_annotation(
x=mid_x,
y=text_y_position,
text=edge_texts[i], # Use the text specific to this edge
showarrow=False,
font=dict(size=12),
align="center"
)
fig1.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1435, # Adjusted width to accommodate more levels
height=1000 # Adjusted height to accommodate more levels
)
return fig1
def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info, common_grams):
# Combine nodes into one list with appropriate labels
nodes = scheme_sentences + sampled_sentence
para_len = len(scheme_sentences)
# Reassign levels: L1 -> L0, L2 -> L1
for i in range(para_len):
nodes[i] += ' L0' # Scheme sentences are now level 0
for i in range(para_len, len(nodes)):
nodes[i] += ' L1' # Sampled sentences are now level 1
# Function to apply LCS numbering based on common_grams
def apply_lcs_numbering(sentence, common_grams):
for idx, lcs in common_grams:
# Only replace if the LCS is a whole word (not part of another word)
sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
return sentence
# Apply LCS numbering
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
# Define the highlight_words function
def highlight_words(sentence, color_map):
for word, color in color_map.items():
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
return sentence
# Clean and wrap nodes, and highlight specified words globally
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
global_color_map = dict(highlight_info)
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]
# Function to determine tree levels and create edges dynamically
def get_levels_and_edges(nodes):
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Add edges from L0 to all L1 nodes
l0_indices = [i for i, level in levels.items() if level == 0]
l1_indices = [i for i, level in levels.items() if level == 1]
# Ensure there are exactly 3 L0 nodes
if len(l0_indices) < 3:
raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")
# Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
for i, l1_node in enumerate(l1_indices):
if i < 4:
edges.append((l0_indices[0], l1_node)) # Connect to the first L0 node
elif i < 8:
edges.append((l0_indices[1], l1_node)) # Connect to the second L0 node
else:
edges.append((l0_indices[2], l1_node)) # Connect to the third L0 node
return levels, edges
# Get levels and dynamic edges
levels, edges = get_levels_and_edges(nodes)
max_level = max(levels.values(), default=0)
# Calculate positions
positions = {}
level_heights = defaultdict(int)
for node, level in levels.items():
level_heights[level] += 1
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
x_gap = 2
l1_y_gap = 10
for node, level in levels.items():
if level == 1:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
else:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
y_offsets[level] += 1
# Function to highlight words in a wrapped node string
def color_highlighted_words(node, color_map):
parts = re.split(r'(\{\{.*?\}\})', node)
colored_parts = []
for part in parts:
match = re.match(r'\{\{(.*?)\}\}', part)
if match:
word = match.group(1)
color = color_map.get(word, 'black')
colored_parts.append(f"<span style='color: {color};'>{word}</span>")
else:
colored_parts.append(part)
return ''.join(colored_parts)
# Define the text for each edge
edge_texts = [
"Highest Entropy Masking",
"Pseudo-random Masking",
"Random Masking",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling"
]
# Create figure
fig2 = go.Figure()
# Add nodes to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, global_color_map)
x, y = positions[i]
fig2.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig2.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=12),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=450,
height=65
)
# Add edges and text above each edge
for i, edge in enumerate(edges):
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig2.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
# Calculate the midpoint of the edge
mid_x = (-x0 + -x1) / 2
mid_y = (y0 + y1) / 2
# Adjust y position to shift text upwards
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# Add text annotation above the edge
# Use a fallback text if we exceed the length of edge_texts
text = edge_texts[i] if i < len(edge_texts) else f"Edge {i+1}"
fig2.add_annotation(
x=mid_x,
y=text_y_position,
text=text, # Use the text specific to this edge
showarrow=False,
font=dict(size=12),
align="center"
)
fig2.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1435, # Adjusted width to accommodate more levels
height=1000 # Adjusted height to accommodate more levels
)
return fig2 |