jhj0517
Port LivePortrait base
93091a7
raw
history blame
15.6 kB
# coding: utf-8
"""
This file defines various neural network live_portrait and utility functions, including convolutional and residual blocks,
normalizations, and functions for spatial transformation and tensor manipulation.
"""
from torch import nn
import torch.nn.functional as F
import torch
import torch.nn.utils.spectral_norm as spectral_norm
import math
import warnings
def kp2gaussian(kp, spatial_size, kp_variance):
"""
Transform a keypoint into gaussian like representation
"""
mean = kp
coordinate_grid = make_coordinate_grid(spatial_size, mean)
number_of_leading_dimensions = len(mean.shape) - 1
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
coordinate_grid = coordinate_grid.view(*shape)
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
coordinate_grid = coordinate_grid.repeat(*repeats)
# Preprocess kp shape
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
mean = mean.view(*shape)
mean_sub = (coordinate_grid - mean)
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
return out
def make_coordinate_grid(spatial_size, ref, **kwargs):
d, h, w = spatial_size
x = torch.arange(w).type(ref.dtype).to(ref.device)
y = torch.arange(h).type(ref.dtype).to(ref.device)
z = torch.arange(d).type(ref.dtype).to(ref.device)
# NOTE: must be right-down-in
x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right
y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom
z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner
yy = y.view(1, -1, 1).repeat(d, 1, w)
xx = x.view(1, 1, -1).repeat(d, h, 1)
zz = z.view(-1, 1, 1).repeat(1, h, w)
meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
return meshed
class ConvT2d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
super(ConvT2d, self).__init__()
self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
padding=padding, output_padding=output_padding)
self.norm = nn.InstanceNorm2d(out_features)
def forward(self, x):
out = self.convT(x)
out = self.norm(out)
out = F.leaky_relu(out)
return out
class ResBlock3d(nn.Module):
"""
Res block, preserve spatial resolution.
"""
def __init__(self, in_features, kernel_size, padding):
super(ResBlock3d, self).__init__()
self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
self.norm1 = nn.BatchNorm3d(in_features, affine=True)
self.norm2 = nn.BatchNorm3d(in_features, affine=True)
def forward(self, x):
out = self.norm1(x)
out = F.relu(out)
out = self.conv1(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv2(out)
out += x
return out
class UpBlock3d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(UpBlock3d, self).__init__()
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = nn.BatchNorm3d(out_features, affine=True)
def forward(self, x):
out = F.interpolate(x, scale_factor=(1, 2, 2))
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class DownBlock2d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
self.norm = nn.BatchNorm2d(out_features, affine=True)
self.pool = nn.AvgPool2d(kernel_size=(2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class DownBlock3d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock3d, self).__init__()
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups, stride=(1, 2, 2))
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = nn.BatchNorm3d(out_features, affine=True)
self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class SameBlock2d(nn.Module):
"""
Simple block, preserve spatial resolution.
"""
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
super(SameBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
self.norm = nn.BatchNorm2d(out_features, affine=True)
if lrelu:
self.ac = nn.LeakyReLU()
else:
self.ac = nn.ReLU()
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = self.ac(out)
return out
class Encoder(nn.Module):
"""
Hourglass Encoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Encoder, self).__init__()
down_blocks = []
for i in range(num_blocks):
down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
self.down_blocks = nn.ModuleList(down_blocks)
def forward(self, x):
outs = [x]
for down_block in self.down_blocks:
outs.append(down_block(outs[-1]))
return outs
class Decoder(nn.Module):
"""
Hourglass Decoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Decoder, self).__init__()
up_blocks = []
for i in range(num_blocks)[::-1]:
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
out_filters = min(max_features, block_expansion * (2 ** i))
up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
self.up_blocks = nn.ModuleList(up_blocks)
self.out_filters = block_expansion + in_features
self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
def forward(self, x):
out = x.pop()
for up_block in self.up_blocks:
out = up_block(out)
skip = x.pop()
out = torch.cat([out, skip], dim=1)
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class Hourglass(nn.Module):
"""
Hourglass architecture.
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Hourglass, self).__init__()
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
self.out_filters = self.decoder.out_filters
def forward(self, x):
return self.decoder(self.encoder(x))
class SPADE(nn.Module):
def __init__(self, norm_nc, label_nc):
super().__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
nhidden = 128
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU())
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
def forward(self, x, segmap):
normalized = self.param_free_norm(x)
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
actv = self.mlp_shared(segmap)
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
out = normalized * (1 + gamma) + beta
return out
class SPADEResnetBlock(nn.Module):
def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
super().__init__()
# Attributes
self.learned_shortcut = (fin != fout)
fmiddle = min(fin, fout)
self.use_se = use_se
# create conv layers
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
# apply spectral norm if specified
if 'spectral' in norm_G:
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
# define normalization layers
self.norm_0 = SPADE(fin, label_nc)
self.norm_1 = SPADE(fmiddle, label_nc)
if self.learned_shortcut:
self.norm_s = SPADE(fin, label_nc)
def forward(self, x, seg1):
x_s = self.shortcut(x, seg1)
dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
out = x_s + dx
return out
def shortcut(self, x, seg1):
if self.learned_shortcut:
x_s = self.conv_s(self.norm_s(x, seg1))
else:
x_s = x
return x_s
def actvn(self, x):
return F.leaky_relu(x, 2e-1)
def filter_state_dict(state_dict, remove_name='fc'):
new_state_dict = {}
for key in state_dict:
if remove_name in key:
continue
new_state_dict[key] = state_dict[key]
return new_state_dict
class GRN(nn.Module):
""" GRN (Global Response Normalization) layer
"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None, scale_by_keep=True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)