|
img_scale = (640, 640) |
|
|
|
|
|
model = dict( |
|
type='YOLOX', |
|
data_preprocessor=dict( |
|
type='DetDataPreprocessor', |
|
pad_size_divisor=32, |
|
batch_augments=[ |
|
dict( |
|
type='BatchSyncRandomResize', |
|
random_size_range=(480, 800), |
|
size_divisor=32, |
|
interval=10) |
|
]), |
|
backbone=dict( |
|
type='CSPDarknet', |
|
deepen_factor=1.0, |
|
widen_factor=1.0, |
|
out_indices=(2, 3, 4), |
|
use_depthwise=False, |
|
spp_kernal_sizes=(5, 9, 13), |
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), |
|
act_cfg=dict(type='Swish'), |
|
), |
|
neck=dict( |
|
type='YOLOXPAFPN', |
|
in_channels=[256, 512, 1024], |
|
out_channels=256, |
|
num_csp_blocks=3, |
|
use_depthwise=False, |
|
upsample_cfg=dict(scale_factor=2, mode='nearest'), |
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), |
|
act_cfg=dict(type='Swish')), |
|
bbox_head=dict( |
|
type='YOLOXHead', |
|
num_classes=80, |
|
in_channels=256, |
|
feat_channels=256, |
|
stacked_convs=2, |
|
strides=(8, 16, 32), |
|
use_depthwise=False, |
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), |
|
act_cfg=dict(type='Swish'), |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=True, |
|
reduction='sum', |
|
loss_weight=1.0), |
|
loss_bbox=dict( |
|
type='IoULoss', |
|
mode='square', |
|
eps=1e-16, |
|
reduction='sum', |
|
loss_weight=5.0), |
|
loss_obj=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=True, |
|
reduction='sum', |
|
loss_weight=1.0), |
|
loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)), |
|
train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)), |
|
|
|
|
|
test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65))) |
|
|
|
|
|
data_root = 'data/coco/' |
|
dataset_type = 'CocoDataset' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), |
|
dict( |
|
type='RandomAffine', |
|
scaling_ratio_range=(0.1, 2), |
|
|
|
border=(-img_scale[0] // 2, -img_scale[1] // 2)), |
|
dict( |
|
type='MixUp', |
|
img_scale=img_scale, |
|
ratio_range=(0.8, 1.6), |
|
pad_val=114.0), |
|
dict(type='YOLOXHSVRandomAug'), |
|
dict(type='RandomFlip', prob=0.5), |
|
|
|
|
|
|
|
|
|
|
|
dict(type='Resize', scale=img_scale, keep_ratio=True), |
|
dict( |
|
type='Pad', |
|
pad_to_square=True, |
|
|
|
|
|
pad_val=dict(img=(114.0, 114.0, 114.0))), |
|
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), |
|
dict(type='PackDetInputs') |
|
] |
|
|
|
train_dataset = dict( |
|
|
|
type='MultiImageMixDataset', |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='annotations/instances_train2017.json', |
|
data_prefix=dict(img='train2017/'), |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='LoadAnnotations', with_bbox=True) |
|
], |
|
filter_cfg=dict(filter_empty_gt=False, min_size=32), |
|
backend_args=backend_args), |
|
pipeline=train_pipeline) |
|
|
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='Resize', scale=img_scale, keep_ratio=True), |
|
dict( |
|
type='Pad', |
|
pad_to_square=True, |
|
pad_val=dict(img=(114.0, 114.0, 114.0))), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=8, |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=train_dataset) |
|
val_dataloader = dict( |
|
batch_size=8, |
|
num_workers=4, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='annotations/instances_val2017.json', |
|
data_prefix=dict(img='val2017/'), |
|
test_mode=True, |
|
pipeline=test_pipeline, |
|
backend_args=backend_args)) |
|
test_dataloader = val_dataloader |
|
|
|
val_evaluator = dict( |
|
type='CocoMetric', |
|
ann_file=data_root + 'annotations/instances_val2017.json', |
|
metric='bbox', |
|
backend_args=backend_args) |
|
test_evaluator = val_evaluator |
|
|
|
|
|
max_epochs = 300 |
|
num_last_epochs = 15 |
|
interval = 10 |
|
|
|
train_cfg = dict(max_epochs=max_epochs, val_interval=interval) |
|
|
|
|
|
|
|
base_lr = 0.01 |
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict( |
|
type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4, |
|
nesterov=True), |
|
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.)) |
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
|
|
|
|
|
|
type='mmdet.QuadraticWarmupLR', |
|
by_epoch=True, |
|
begin=0, |
|
end=5, |
|
convert_to_iter_based=True), |
|
dict( |
|
|
|
type='CosineAnnealingLR', |
|
eta_min=base_lr * 0.05, |
|
begin=5, |
|
T_max=max_epochs - num_last_epochs, |
|
end=max_epochs - num_last_epochs, |
|
by_epoch=True, |
|
convert_to_iter_based=True), |
|
dict( |
|
|
|
type='ConstantLR', |
|
by_epoch=True, |
|
factor=1, |
|
begin=max_epochs - num_last_epochs, |
|
end=max_epochs, |
|
) |
|
] |
|
|
|
default_hooks = dict( |
|
checkpoint=dict( |
|
interval=interval, |
|
max_keep_ckpts=3 |
|
)) |
|
|
|
custom_hooks = [ |
|
dict( |
|
type='YOLOXModeSwitchHook', |
|
num_last_epochs=num_last_epochs, |
|
priority=48), |
|
dict(type='SyncNormHook', priority=48), |
|
dict( |
|
type='EMAHook', |
|
ema_type='ExpMomentumEMA', |
|
momentum=0.0001, |
|
update_buffers=True, |
|
priority=49) |
|
] |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=64) |
|
|